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ABSTRACT 

 

 

 

Pressure vessel especially welded pressure vessel steel often failed catastrophically due 

to hydrogen embrittlement. Some examples of pressure vessels case histories of failure 

cases are due to hydrogen embrittlement phenomena. In accordance to that reason, 

evaluation on embrittlement phenomena of welded pressure vessel exposed to hydrogen 

must be carried out. ASTM A516 Gr 70 carbon steel which is commonly used for 

pressure vessel is selected for the study. The specimens are submerged arc welded in X-

groove type. Electrolysis is carried out to expose the specimen towards hydrogen at three 

different exposure times which are 5 hours, 7 hours and 17 hours. As comparison, non-

hydrogenated specimens are tested. In weldment, there are three main zones; base metal 

(BM) zone, heat affected zone (HAZ) and weld metal (WM) zone. However, 

microstructure and mechanical tests are only done on BM and HAZ as they have greater 

tendency to cause failures due to hydrogen embrittlement. Optical microscope and 

Scanning Electron Microscope (SEM) analysis are used to study the microstructure of 

the specimens. From the experiment, the difference between BM and HAZ overall 

microstructure, grain size and shape are clearly observed. Dislocations are more severely 

occur in the HAZ region and the hardness of the specimens is increased by the 

increasing of cathodic charging time. The complexity of HAZ microstructures in a slim 

region is expected to cause the dislocation in the specimens’ structure and initiate the 

cracks. Long hydrogen exposure times could cause the decrement in some important 

properties of the specimens which lead to hydrogen damages.  
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ABSTRAK 

 

 

 

Dandang bertekanan terutamanya dandang tekanan besi berkimpal seringkali gagal 

dengan dahsyat disebabkan oleh perapuhan hidrogen. Beberapa contoh kes sejarah 

kegagalan dandang bertekanan adalah disebabkan oleh fenomena perapuhan hidrogen. 

Bertepatan dengan alasan itu, taksiran ke atas fenomena perapuhan dandang bertekanan 

besi berkimpal terdedah kepada hidrogen perlu dijalankan. Besi karbon ASTM A516 Gr 

70 yang mana biasa digunakan untuk dandang bertekanan telah dipilih untuk kajian ini. 

Spesimen-spesimen telah dikimpal separa cantum dalam alur jenis X. Electrolisis telah 

dijalankan untuk mendedahkan spesimen kepada hidrogen pada tiga masa pendedahan 

yang berlainan iaitu 5 jam, 7 jam dan 17 jam. Sebagai perbandingan, spesimen tidak 

terhidrogenasi telah dikaji. Dalam pengimpalan, terdapat tiga zon utama; logam 

spesimen (BM), zon terkesan haba (HAZ), dan zon kimpalan(WM). Bagaimanapun, 

ujian mikrostruktur dan mekanikal hanya dijalankan ke atas BM dan HAZ disebabkan 

mereka lebih cenderung untuk menyebabkan kegagalan berpunca daripada perapuhan 

hidrogen. Mikroskop optik dan analisis Mikroskop Imbasan Electron (SEM) digunakan 

untuk mengkaji mikrostruktur spesimen-spesimen. Daripada eksperimen, perbezaan 

diantara keseluruhan mikrostruktur, saiz bijian dan bentuk bijian BM dan HAZ dapat 

diperhatikan dengan jelas.  Kehelan adalah lebih ketara terjadi di dalam bahagian HAZ 

dan kekerasan spesimen-spesimen adalah bertambah berdasarkan penambahan masa 

pngecasan katodik. Kekompleksan mikrostruktur HAZ di dalam kawasan yang sempit 

telah disyaki menyebabkan kehelan di dalam struktur spesimen-spesimen dan 

memulakan keretakan. Masa pendedahan hidrogen yang lama boleh menyebabkan 

penurunan di dalam beberapa sifat-sifat penting spesimen-spesimen yang membawa 

kepada kerosakan hidrogen.    
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CHAPTER 1 
INTRODUCTION 

 

 

 

1.1 Background 
 

Hydrogen is one of the mostly known environment which surrounds in human daily 

lives. It contained in water (H2O), use as fuel including rocket fuel, filling balloon, 

preparing others useful chemical such as hydrochloric and methanol, and others. 

However, it also has a wide range of harmful effects on metals; known as hydrogen 

damages. Occurrences of hydrogen had caused several damages on pressure vessels, 

since a few decades ago.  

 

Hayes (1996) stated six case histories of pressure vessels failures within 1963 to 1984 in 

her research study. Three of the failures were clearly caused by hydrogen; John 

Thompson ammonia converter pressure vessel for ICI Immingham (1965), Robert 

Jenkins pressure vessel (1970) and Union Oil Co. Amine absorber tower (1984). Both 

failures at John Thompson and Robert Jenkins pressure vessels were initiated by crack at 

the heat affected zone (HAZ) of weldment. The probable cause of the original crack was 

hydrogen cracking. Meanwhile, Union Oil Co. Amine absorber pressure vessel failure 

was caused by the hydrogen blistering which later formed four cracks at the HAZ. 

According to Hayes study, it can be concluded that hydrogen penetration is more 

sensitive towards the HAZ rather than the base metal and the fusion zone. Another case 

of failure is on December 13, 1984, at the Las Piedras Refinery, Venezuela in which a 

crack was found in the heat affected zone about 1-1.5 inches from weld and fatigue is 

dominantly occurred due to hydrogen embrittlement (Abduh, 2008).  
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Hydrogen damages can be classified into several types and one of them is Hydrogen 

Embrittlement (HE). HE occurred when hydrogen is absorbed into the material and 

results in reduction of its mechanical performance. Propagation of hydrogen atoms into 

metals will cause severe failures. It can be initiator to others problems and corrosion of 

the metals as well. Hydrogen could be developed from water vapor in atmosphere, 

melting metal process, electrolysis in electroplating, welding and others. 

  

Reduction of the mechanical properties such as decreasing in ductility and loss in tensile 

strength are the main problem occurred from HE. Hence, microscopic examination is 

carried out in order to study in detail the embrittlement process that causes reduction of 

materials properties. Microstructure of ASTM A516 metal specimens exposed to 

hydrogen at three different exposure times will be further observed and explained 

throughout this research. 

 

Pressure vessel is a closed container used for liquid or gases storage at high pressure. 

ASTM A516 is one of the steel commonly used for pressure vessel at low and moderate 

temperature. In this study, welded pressure vessel specimen is used for the determination 

of hydrogen adsorption effects. The pressure vessel has broad application such as liquid 

and gases storage in oil refinery, diving cylinder, LPG gas storage and others. Welded 

pressure vessel has different properties than non-welded pressure vessel and it will be 

explain in detail throughout this thesis. 

 

 

1.2 Problem Statement 
 

Pressure Vessel steel had been designed so that it capable to operate in the elevated 

temperature and high pressure environmental service application. However, due to long 

time exposure to hydrogen environment, hydrogen embrittlement occurred and 

significantly embrittled the steel. As the pressure vessel is welded, the tendency of 

hydrogen embrittlement occurs in the weld part could be slightly different from the 

vessel steel part, because of the differences in chemical composition and some other 

2 
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factors. Hence, an investigation is carried out to check the durability of pressure vessel 

starting with the crack inspection of two types of samples; hydrogen exposed steel and 

non-hydrogen exposed steel, and then each type of samples are divided into two distinct 

parts; base metal and heat affected zone. Weld metal will not included in detail for this 

study as there is very little and almost none failure cases regarding to the weld metal. 

The microstructure of each samples are evaluated to analyze the differences of hydrogen 

embrittlement by means of different exposure times. Elements in the samples are 

determined by using Energy Dispersive X-ray Microanalysis (EDX) which also known 

as Energy dispersive Spectroscopy (EDS). 

 

 

1.3 Research Objective 

 
a) To evaluate the hydrogen embrittlement mechanism. 

b) To analyze the microstructure of two distinct zones in the welded pressure vessel 

steel and to differentiate their properties. 

 

 

1.4 Research Scope  
 

This study is mainly focused into three major scopes. First is to analyze the welded 

pressure vessel steel characteristics and its behavior towards the mechanical properties. 

Microstructure of two out of three distinct zones of the welded pressure vessel steel; 

base metal (PV steel) and heat affected zone, are further investigated to differentiate 

their properties. Then, electrolysis is carried out in order to expose the sample towards 

hydrogen. Finally, the hardness test is done to differentiate the hardness of the zones for 

the hydrogen exposed and non-hydrogen exposed specimens. Besides three non-

destructive tests; optical microscopy test, Scanning Electron Microscopy (SEM) and 

Energy Dispersive X-ray Microanalysis (EDX), were also carried out.  
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CHAPTER 2 
LITERATURE REVIEW 

 

 

 

Hydrogen Embrittlement is a failure phenomenon where the ductile metal becomes 

brittle due to hydrogen exposure. National Board Bulletin (January 1986) describes the 

cause of a monoethandamine (MEA) absorber vessel that ruptured in the state of Illinois 

in 1984, resulting in 17 fatalities and property damage in excess of $100 million 

(Schmeilski, 1986). This article is describing the affect of welding factors and corrosion 

factors that contributed to the rupture. Besides that, hydrogen adsorption is investigated 

over MEA adsorption as another possible factor. Several type of hydrogen damage will 

be further investigated especially damages which occurred at room temperature. 

Metallurgical of two different zones in welded pressure vessel of ASTM A516 Gr. 70 

will be observed. The following literature review attempt to explain in detail each 

component included in this research. 

 

 

2.1 Hydrogen Damage 
 

Hydrogen damage is a metal degradation processes cause by the interaction with 

hydrogen gases (Fontana, 1986).  The hydrogen atom is the smallest of all atoms and 

hydrogen attack is similarly insidious and hidden from the simple inspection techniques. 

Hydrogen is present practically everywhere, in the atmosphere, several kilometers above 

the earth and inside the earth. Engineering materials are exposed to hydrogen and they 

may interact and resulting various kinds of the structural damage. Damaging effects of 

hydrogen in metallic materials have been known since 1875 when W. H. Johnson 

reported that some remarkable changes are produced in iron by the action of hydrogen 
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and acids (Hayes, 1996). During the intervening years many similar effects have been 

observed in the different structural materials like steels, aluminum, titanium, zirconium, 

etc. Because of the technological importance of hydrogen damage, many people 

explored the nature, causes and the control measures of hydrogen related degradation of 

metals. Hardening, embrittlement and internal damage are the main hydrogen damage 

processes in metals. Figure 2.1 schematically shows the mechanism of the degradation 

begins with the formation of free hydrogen atom at the steel surface. Technically, the 

hydrogen atoms are developed from the sulphide attack of the process medium at the 

steel surface. As a result of electrochemical reaction, hydrogen atoms are generated and 

the steel surfaces are corroded. 

 

Figure 2.1: Electrochemical reactions occurring during corrosion of metal M in hydrochloric acid 
(Fontana, 1986) 

 

The process variables for hydrogen occurrence are; (a) Acidic environment with acidity 

of pH 4.0 and below has greater tendency for hydrogen damage with the presence of 

H2S. However, if both H2S and cyanide are present, hydrogen damage can occur at 

acidity level above the pH 7.0. (b) Normally, H2S level above 50ppm is required for the 

attack. Meanwhile, in the presence of cyanide, H2S threshold level for the attack is 

reduces remarkably. (c) Basically, hydrogen damage takes place at two temperature 

regions which are temperatures at the ambient and slightly above 26oC-150oC and at the 

elevated temperatures. At elevated temperature, moisture does not required to develop 

the damage. 
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2.1.1 Classification of Hydrogen Damage 

 

As stated earlier, hydrogen damage will takes place at the two temperature region; 

elevated temperatures and at the ambient and slightly above. Ambient hydrogen damage, 

also known as wet Hydrogen Sulfide (H2S) damage can be classified in terms of a 

number of distinct classes as shown in Table 2.1.  

 
Table 2.1: Some examples of hydrogen damages at two different temperatures ranges. 

Low / Moderate Elevated 
i) Hydrogen Embrittlement i) Decarburization 
ii) Hydrogen Blistering ii) Hydrogen Attack 
iii) Stress Corrosion Cracking   

 

 

Stress corrosion cracking is a class of corrosion which is typically develops in hard spots 

of weld; cracking occur in weld metal itself (Mostert & Sharp, 2005). In SCC, the 

ductile metal is said to be failed in the brittle manner or known as ductile to brittle 

transition. Two main conditions must be correlated in SCC are stress is being applied 

towards the metal together with the presence of hydrogen. Meanwhile, hydrogen 

blistering (HB) results from the penetration of hydrogen same as HE, instead the effect 

of the penetration of hydrogen towards the material physical. In HB, hydrogen gas 

nucleates at the internal defects and inclusions, forming voids which eventually generate 

enough pressure to locally rupture the metal (Fontana, 1986).  

 

 

 

                                                                               
 
 

 
 
 
 
 

Figure 2.2: (a) Hydrogen blistering. (b)  SCC in weld metal. (Mostert and Sharp, 2005) 

(a) (b) 
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Both of the corrosion types shown in Figure 2.2 slightly have potential to be developed 

in this research. However, more focus are given on the hydrogen embrittlement as the 

main hydrogen damage assumed to develop rather than both stated earlier. Furthermore, 

hydrogen embritlement is more prevalent at room temperature and decreases with the 

increasing temperature (Kim, 2002). 
 
 

 

2.1.2 Hydrogen Embrittlement 

 

Hydrogen embrittlement is a form of environmentally assisted failure which is caused by 

the action of hydrogen often in combination with residual or applied stress resulting in 

the reduction of the load bearing capacity of a component. Many metallic alloys such as 

those of Fe, Ni, Al, Ti, Zr, Ta, Hf, Nb, V, W, Mo and U are susceptible to hydrogen 

embrittlement and in fact no structural alloy is totally immune to this type of 

embrittlement (Dayal & Parvathavarthini, 2003). According to Kim (2002), the presence 

of hydrogen in steel reduces the tensile ductility and causes premature failure under the 

static loads that depends on the stress and time. The mechanism starts with the single 

hydrogen atoms diffusing through the metal as shown in Figure 2.3.  

 

 
Figure 2.3: Hydrogen atom penetration through metal (Toyer, 2004). 

 

 

Typical conditions of hydrogen embrittlement are at the pressure of 10-6 to 10 8 N/m2 and 

usually observed at -100˚C to 700˚C; most severe near 20˚C as stated by ASTM. Besides 

that, embrittlement is more severe at low strain rate and in notched or pre-cracked 
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