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ABSTRACT

This project would give more understanding about least square method, model

structure selection, difference equation model and correlation test. Through the study,

the significance of correlation analysis in selection of difference equation minimum

model specification is understood and the knowledge of variable correlation analysis is

utilized in selection of difference equation minimum model specification. The scopes of

the project are limited to implement the study to five simulated linear and nonlinear

difference equation model. The mathematical models that apply in this research are

ARX and NARX model. In system identification both the determination of model

structure and model validation are important steps. Autocorrelation test and cross-

correlations are two of the correlation analyses used. The results were obtained through

programming using Matlab software and then compared in order to identify and select

the difference equation minimum model specification by correlation analysis. It is

shown that the application and interpretation of these tests to simulated data were able to

identify a simpler if not the same, model specification as the original specification.
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ABSTRAK

Projek ini memberi pemahaman tentang kaedah least square, pemilihan struktur

model, model persamaan pembezaan dan analisis korelasi. Melalui kajian dan

pembelajaran, kepentingan analisis korelasi dalam pemilihan struktur model difahami

dan pengetahuan tentang analisis korelasi pembolehubah dikembangkan dalam

pemilihan spesifikasi model minimum persamaan pembezaan. Skop projek terhad

kepada mempraktikkan kajian kepada sebilangan model persamaan pembezaan lelurus

dan bukan lelurus yang disimulasikan. Model matematik yang diaplikasikan dalam

kajian ini adalah model ARX dan NARX. Dalam sistem identifikasi, kedua-dua

pemilihan struktur model dan pengesahan model merupakan langkah-langkah penting.

Ujian autokorelasi dan korelasi bersilang adalah dua analisis korelasi pembolehubah

yang digunakan. Keputusan diperolehi melalui pengaturcaraan menggunakan perisian

Matlab dan kemudian dibandingkan untuk mengenalpasti dan memilih spesifikasi model

minimum persamaan pembezaan melalui analisis korelasi. Keputusan menunjukkan

aplikasi ujian-ujian korelasi terhadap data yg disimulasikan dapat menghasilkan

spesifikasi model yang mudah jika tidak sama dengan spesifikasi asal.
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CHAPTER 1

INTRODUCTION

1.1 Background of Project

Often when engineers analyze a system to be controlled or optimized, they use a

mathematical model. In analysis, engineers can build a descriptive model of the system

as a hypothesis of how the system could work, or try to estimate how an unforeseeable

event could affect the system. Similarly, in control of a system, engineers can try out

different control approaches in simulations. A mathematical model usually describes a

system by a set of variables and a set of equations that establish relationships between

the variables. The values of the variables can be practically anything; real or integer

numbers, Boolean values or strings, for example. The variables represent some

properties of the system, for example, measured system outputs often in the form of

signals, timing data, counters, and event occurrence. The actual model is the set of

functions that describe the relations between the different variables. Mathematical

models can take many forms, including but not limited to differential equations,

dynamical systems, statistical models, or game theoretic models. These and other types

of models can overlap, with a given model involving a variety of abstract structures. The

selection of difference equation minimum model specification by correlation analysis is

stated and discussed.
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1.2 Problem Statement

Mathematical models are usually composed of variables, which are abstractions

of quantities of interest in the described systems, and operators that act on these

variables can be algebraic operators, functions and differential operators. If all the

operators in a mathematical model present linearity, the resulting mathematical model is

defined as linear. A model is considered to be nonlinear otherwise. The question of

linearity and nonlinearity is dependent on context, and linear models may have nonlinear

expressions in them. For example, in a statistical linear model, it is assumed that a

relationship is linear in the parameters, but it may be nonlinear in the predictor variables.

Similarly, a differential equation is said to be linear if it can be written with linear

differential operators, but it can still have nonlinear expressions in it. In a mathematical

programming model, if the objective functions and constraints are represented entirely

by linear equations, then the model is regarded as a linear model. If one or more of the

objective functions or constraints are represented with a nonlinear equation, then the

model is known as a nonlinear model. In the present study, correlation functions were

used to detect the presence of unmodelled linear and non-linear terms in the residuals.

Once a model of the process has been estimated, whether linear or non-linear, model

validity tests are applied to detect if there are any unmodelled terms in the residuals that,

if omitted from the model, will induced biased estimates.

1.3 Objective

The objectives of the projects are:

i. To understand the significance of correlation analysis in model structure

selection.

ii. To utilize the knowledge of variable correlation analysis in selection of

difference equation minimum model specification.
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1.4 Scopes

The scopes of the project are:

i. To implement the study to a number of simulated linear difference equation

model.

ii. To expand the finding to nonlinear difference equation model.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter the model structure selection of system identification, difference

equation model and correlation analysis are discussed. All this will give more

understanding about the significance of correlation analysis in model structure selection

those are used in this research. This chapter also includes the variable correlation

analysis in selection of difference equation minimum model specification. To start an

analysis, all the definitions must be known.

2.2 System Identification

System identification is one of the two possible ways of obtaining mathematical

models for a certain object either a signal or a system by processing experimental data

collected in an operation regime that is thought to be close to that in which the model is

going to be used (Söderström and Stoica, 2002). The other possible way, called

mathematical modelling, consists of making use of the laws those are known to govern

the behaviour of the system to obtain a mathematical model for it. The main drawback

of mathematical modelling is that it cannot be applied to complicated systems either
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because the resulting model would be too complex and difficult to use or simply because

the laws that govern such systems are unknown. System identification, on the other hand

can be applied to virtually any system and typically it yields relatively simple models

that can well describe the system's behaviour in a certain operation regime.

2.2.1 The Least Squares Method

The Least Square method is applicable to dynamic models of the form

1 1( ) ( 1) ( ) ( 1) ( ) ( ).na nby t a y t a y t na b u t b u t nb t           (2.1)

Here  (t) denotes an equation error, which can describe disturbances or unmodeled

dynamics. Using the backward shift operator -1q , so that -1q u (t) = u ( t - 1) , one can write

(2.1) in abbreviated form

-1 -1A(q )y(t) = B(q )u(t) + (t)

(Söderström and Stoica, 2002) (2.2)

with

-1 -1 -na
1 naA(q ) = l +a q  +...+a q (2.3)

-1 -1 -nb
1 nbB(q ) = b q +...+b q .

The model (2.2) can be equivalently expressed as the linear regression mode1

y(t) = (t)  + (t),T   (2.4)

where



6

T (t) = ( - y ( t - 1 ) . . .  - y ( t - n a )   u ( t - 1 ) . . . u ( t - nb ) )
T

1 na 1 nb        = ( a  . . . a  b ...b ) . (2.5)

Assume that the data u(1), y(1) . . . . u(N), y(N) are available. The LS estimate,


 of the

parameter vector   is defined as the minimizing argument of the sum of squared

equation errors

2 2

1 1

1 1( ) ( ) ( )
N N

N
t t

V t y t
N N

 
 

    
 

1 1

2 1( ) ( ) ( ) ( ) .
N N

T T T

t t
y t t t t

N N
     

 

          
  (2.6)

By setting the gradient of ( )NV  to zero we get the normal equations

1 1

1 1( ) ( ) ( ) ( )
N N

T

t t
t t t y t

N N
   



 

         
 

(2.7)

Assuming the matrix in (2.7) to be non-singular (which it "normally" is), we thus have

1

1 1

1 1( ) ( ) ( ) ( )
N N

T

t t
t t t y t

N N
   




 

   
       

 
(2.8)

Shown below is an example of Least Square method. Consider a class of systems given

by

0 0 0( ) ( 1) ( 1) ( ) ( 1)y t a y t b u t e t c e t       (2.9)
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where e(t) is a sequence of independent and identically distributed random variables

with mean zero and variance 2 . Such a sequence is called white noise. Two different

sets of parameter values are used, namely,

1 0: 0.8S a   0 1.0b  0 0.0c  1.0 

2 0: 0.8S a   0 1.0b  0 0.8c   1.0  (2.10)

The system 1S  can thus be represented as

1 : ( ) 0.8 ( 1) 1.0 ( 1) ( )S y t y t u t e t     (2.11)

whereas 2S can be written as

2 : ( ) 0.8 ( 1) 1 ( 1) ( )S y t x t u t e t    

( ) 0.8 ( 1) 1 ( 1) ( ) 0.8 ( 1)y t y t u t e t e t      

0.8 ( 1) 0.8 ( 1) 0.8 ( 1)y t x t e t    

( ) 0.8 ( 1) 1.0 ( 1)x t x t u t    (2.12)

( ) ( ) ( )y t x t e t 

The white noise e(t) hence enters in different ways in the two systems. For the system 1S

it appears as an equation disturbance, whereas for 2S  it is added to the output. Note that

for 2S  the signal x(t) can be interpreted as the deterministic or noise-free output.

Shown below is why the LS estimates to be consistent for system 1S but not for

system 2S . Consider a linear system of a general order and write it as

-1 -1
0 0A (q )y(t) = B (q )u(t) + v(t) (2.13)
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or, equivalently,

0y(t) = (t) + v(t).T  (2.14)

Here 0  is called the true parameter vector. Assume that v(t) is a stationary stochastic

process that is independent of the input signal.

The estimation error becomes

1

0 0
1 1 1

1 1 1(t) (t) (t) (t) (t) (t)
N N N

T T

t t t
y

N N N
  




  

                   
  

1

1 1

1 1(t) (t) (t) (t)
N N

T

t t
v

N N



 

   
         

  (2.15)

Under weak conditions, the sums in (2.15) tend to the corresponding expected values as

the number of data points, N, tends to infinity. Hence 


 is consistent

(That is, 


 tends to 0  as N tends to infinity) if (and essentially only if)

E[ (t) (t)]T   is non-singular (2.16)

E[ (t)v(t)] = 0, (2.17)

where E denotes the expectation operator. Condition (2.16) is satisfied in most cases.

However, there are, a few exceptions:

 The input has a spectral density that is nonzero at less than nb frequencies (u(t) is

not persistently exciting of order bn ).

 The data are completely noise free (v(t)   0) and the model order is chosen too

high (which implies that -1
0A (q ) and -1

0B (q )  have common factors).

 The input u(t) is generated by a linear low-order feedback from the output.
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