"I declare that I have read this thesis and in my opinion, it is suitable in term of scope and quality for the purpose of awarding a Bachelor Degree in Electronic Engineering (Industrial Electronic)"

Signature : Augulloud

Supervisor: A. NASORUDDIN B. MOHAMAD. Date : $\frac{31}{02}/65$

C Universiti Teknikal Malaysia Melaka

HOME CONTROL SYSTEM

MOHD KAMIL BIN MOHD ZAHARI

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronic)

.

Faculty of Electronics And Computer Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

MARCH 2005

C Universiti Teknikal Malaysia Melaka

"Hereby, I declare that this report is a result of my own research idea except for works that have been cited clearly in the references."

Signature Name Date :

÷

1

Unit

MOHD KAMIL B. MOHD ZAHARI 31' - 3 - 2005

ii

Special dedicated to my dearest parent, sisters and brothers

•

ACKNOWLEDEMENTS

Firstly, I would like to express my gratitude and thanks to my project supervisor, Encik A. Nasoruddin B. Mohamad for his invaluable guidance and advice towards completing this project. Besides, I would like to say thanks to my friends, especially Khairuddin B. Osman, Hazli Rafis B. Rahim and Hafizul Effendi B. Mahadi for their support and guidance throughout this project.

My warmest gratitude also goes to all those who had directly and indirectly contributed in one way or another towards the completion of this project.

Last but not least, to all my beloved family members, who were there to encourage, advice, comfort, cherish and give their full support when I most need it.

Thank you.

iv

ABSTRACT

This project is to design a software and hardware which have the ability to control and operate every electrical appliance in the house automatically by using computer which that the system can be pre-program by user. Through it, knowledge in design and using programming language for interfacing purposes can be learns and improves. The selection of the QuickBASIC program is for better fundamental understanding on computer program application in the computer interfacing. This project will be separate to three parts. The first part is designing the software for interfacing, data key in and timing. The second part is finding and designing the hardware for the project. The third part is joining the entire component that had been design. In this project, the component that will be use includes opto-isolator, electromechanical relays (EMR), Ultra Sonic transducer for motion sensing, timer and parallel port. The advantages of this design are the cost is quite low. Secondly, although the computer is used as the prime controller of this project; if there is any fault occurs to the computer such as system is down or the computer is damage, manual control can still be used whereas the selector switch will be used for the user to select the control mode. Interfacing takes advantage of low-cost, high-speed input/output port, and compatible with high -level languages. The conception of this project can be apply to other purposes such as for security and reduce power consumption. From this project, a model for Home Control System has been developed and successfully simulates the control home electrical appliances.

ABSTRAK

Secara umumnya, projek ini adalah bertujuan untuk merekabetuk aturcara dan perkakasan yang membolehkan pengguna mengawal dan mengoperasikan setiap peralatan elektrik di dalam rumah mereka secara automatik menggunakan komputer; dimana ianya bergantung pada masa serta tempoh yang ditetapkan pengguna pada program. Melalui projek ini, pengetahuan dalam merekabentuk dan penggunaan bahasa pengaturcaraan untuk tujuan pengantaramukaan dapat dipelajari dan dipertingkatkan. Pemilihan penggunaan program QuickBASIC sebagai bahasa pengaturcaraan adalah disebabkan untuk mendalami penggunaan program komputer dalam pengantaramukaan komputer dari peringkat asas. Projek ini terbahagi kepada 3 bahagian. Bahagian pertama akan memberi penekanan kepada gerak kerja untuk pengantaramukaan, masukan data dan pemasaan. penghasilan aturcara Bahagian kedua pula adalah mengenalpasti komponen yang diperlukan dan mereka perkakasan untuk projek ini. Bahagian terakhir adalah menggabungkan semua bahagian yang berkaitan. Dalam projek ini, komponen yang digunakan termasuklah geganti elektromekanikal, transduser UltraSonic untuk tujuan opto-isolator. pengesan pergerakan, pemasa 555 dan port selari. Kelebihan pendekatan serta kaedah yang digunakan di dalam projek ini adalah kos yang murah. Selain itu, walaupun komputer digunakan sebagai kawalan utama untuk projek ini, jika sekiranya berlaku perkara yang tidak diingini pada komputer atau sistem komputer rosak, kawalan secara manual masih boleh dilakukan dimana suis pemilih digunakan bagi membolehkan pengguna memilih jenis(mode) kawalan samada secara automatik atau manual. Pengantaramukaan mempunyai kelebihan dari segi kos yang murah, saluran keluaran/masukan berkelajuan tinggi dan mempunyai keserasian untuk menggunakan bahasa komputer yang tinggi. Konsep projek ini juga boleh diaplikasikan untuk tujuan lain seperti untuk keselamatan dan pengurangan penggunaan tenaga. Daripada projek ini, satu model 'Home Control System' telah dibina dan berjaya menjalankan simulasi bagi kawalan peralatan elektrik dirumah.

CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	iv	
	ABSTRACT	v
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF FIGURES	xii
	LIST OF TABLES	xiv
	LIST OF APPENDICES	xv
I	INTRODUCTION	1
	1.1 OVERVIEW	1
	1.2 TITLE AND OBJECTIVES	2
	1.3 SCOPES	2
	1.4 PROJECT WORKFLOW	3
	1.5 WORK SCHEDULES	4
п	PROJECT BACKGROUND AND	
	LITERATURE REVIEW	6
	2.1 OVERVIEW	6
	2.2 PROJECT BACKGROUND	8
	2.3 TERMINOLOGY	8

	2.3.1	Interfac	ing		8							
	2.3.2	Program	nming Lan	guage	9							
	2.3.3	Comput	ter		10							
	2.3.4	Optoiso	lator	ator								
	2.3.5	Relays			13							
		2.3.5.1	Overview		13							
		2.3.5.2	Input Vol	tages	13							
		2.3.5.3	Electrome	echanical								
			Relays Op	peration	15							
		2.3.5.4	Solid Stat	e Relays	15							
		2.3.5.5	Relay Cri	teria For A								
			Project		16							
		2.3.5.4	Electrome	echanical								
			Relay (H	JR – 1C)	17							
SENSORS AND TRANSDUCERS												
2.4.1 Mechanical Sensors												
		2.4.1.1	Resistive	Sensors	19							
		2.4.1.2	Inductive	Sensors	20							
	2.4.2	Therma	l Sensors		20							
		2.4.2.1	Thermoco	ouples	21							
		2.4.2.1	Thermisto	or	21							
	2.4.3	Optical	Sensors		22							
		2.4.3.1	Infrared (IR)	22							
		2.4.3.2	Ultrasoni	c Sensor	24							
			2.4.3.2.1	Selection of								
				Ultrasonic Sensor	25							
			2.4.3.2.2	Fundamental								
				Ultrasonic Properties	26							
			2.4.3.2.3	Sound Wave								
				Propagation Speed in								
				the Air	26							
			2.4.3.2.4	Attenuation of Sound								
				as a Function of								
				Frequency and Humidity	28							

2.4

		2.4.3.2.5 Background Noise	28							
		2.4.3.2.6 Effects of Frequency,								
		Distance and the								
		Transmission Medium on								
		the Magnitude of								
		Sound Pressure	29							
	2.5	PROJECT BENEFITS	30							
ш	APP	LICATION PROGRAM DEVELOPMENT								
	тос	DLS	31							
	3.1	OVERVIEW	31							
	3.2	INTRODUCTION OF QuickBASIC								
		LANGUAGE	32							
		3.2.1 Interpreted BASIC	33							
		3.2.2 Compiled BASIC	33							
	3.3	QuickBASIC FEATURES	34							
		3.3.1 'It Can be programs in modular forms	34							
		3.3.2 Easier to Learn	34							
		3.3.3 Easier to Construct/Produce Programs	35							
		3.3.4 Easier to Debug	35							
	3.4	OTHER QuickBASIC FEATURES	35							
	3.5	QuickBASIC SOURCE CODE	36							
	3.6	SOURCE CODE FOR								
		'HOME CONTROL SYSTEM'	39							
	3.7	PROGRAM FLOW CHART	46							
	3.8	FLOW CHART EXPLANATION	47							
IV	HAR	HARDWARE DEVELOPMENT								
	4.1	OVERVIEW								
	4.2	HARDWARE BLOCK DIAGRAM	50							
	4.3	PARALLEL PORT	51							
		4.3.1 Why Use Parallel Port	54							
		4.3.2 Serial vs. Parallel Transmission	56							
		4.3.3 General Structure Of Parallel								

C Universiti Teknikal Malaysia Melaka

ix

		2.4.3.2.5 Background Noise	28							
		2.4.3.2.6 Effects of Frequency,								
		Distance and the								
		Transmission Medium on								
		the Magnitude of								
		Sound Pressure	29							
	2.5	PROJECT BENEFITS	30							
ш	APP	LICATION PROGRAM DEVELOPMENT								
	тос	DLS	31							
	3.1	OVERVIEW	31							
	3.2	INTRODUCTION OF QuickBASIC								
		LANGUAGE	32							
		3.2.1 Interpreted BASIC	33							
		3.2.2 Compiled BASIC	33							
	3.3	QuickBASIC FEATURES	34							
		3.3.1 'It Can be programs in modular forms	34							
		3.3.2 Easier to Learn	34							
		3.3.3 Easier to Construct/Produce Programs	35							
		3.3.4 Easier to Debug	35							
	3.4	OTHER QuickBASIC FEATURES	35							
	3.5	QuickBASIC SOURCE CODE	36							
	3.6	SOURCE CODE FOR								
		'HOME CONTROL SYSTEM'	39							
	3.7	PROGRAM FLOW CHART	46							
	3.8	FLOW CHART EXPLANATION	47							
IV	HAF	HARDWARE DEVELOPMENT								
	4.1	OVERVIEW	49							
	4.2	HARDWARE BLOCK DIAGRAM	50							
	4.3	PARALLEL PORT	51							
		4.3.1 Why Use Parallel Port	54							
		4.3.2 Serial vs. Parallel Transmission	56							
		4.3.3 General Structure Of Parallel								

C Universiti Teknikal Malaysia Melaka

		Port Bus	ses	56
		4.3.3.1	Address Lines	57
		4.3.3.2	Data Lines	57
		4.3.3.3	Data-Transfer Control Lines	58
		4.3.3.4	Interrupt Lines	58
		4.3.3.5	Bus Exchange Lines	58
		4.3.3.6	Utility Lines	59
	4.3.4	A Simpl	le Bus Structure	59
	4.3.5	Centron	ics	60
	4.3.6	Alternat	ives to the Parallel Port	61
4.4	INTE	RFACING	G CIRCUIT OPERATION	63
4.5	RELA	YS CIRC	CUIT OPERATION	65
4.6	POW	ER SUPP	LY CIRCUIT OPERATION	67
4.7	ULTR	ASONIC	MOTION DETECTOR	
	CIRC	UIT OPE	RATION	68
	4.7.1	Transmi	itter Section	68
	4.7.2	'Receive	r Section	69
4.8	ALAF	RM CIRC	UIT OPERATION	71
4.9	PROJ	71		
	4.9.1	Overvie	W	71
	4.9.2	Work P	lan	72
		4.9.2.1	Project Design	73
		4.9.2.2	Project Construction	74
		4.9.2.3	Project Assembling	74
		4.9.2.4	Project Testing	75
ANA	LYSIS	AND FI	NDING	76
5.1	OVE	RVIEW		76
5.2	ANA	LYSIS		76
	5.2.1	Simple	Testing on Parallel	
		Port Ou	tput	77
	5.2.2	Calcular	tion Method to Send Data	
		to the P	rogram (in driving LEDs)	77
	5.2.3	Quick E	Basic Code to Write	

C Universiti Teknikal Malaysia Melaka

V

			to I/O P	orts	77			
		5.2.4	Distance	79				
		5.2.5	Size Ob	jects Can Be Detected				
			By Ultra	asonic Sensor	79			
		5.2.6	Height (Can Be Detected				
			From Fl	our	80			
	5.3	FIND	INGS		80			
		5.3.1	In Ultra	sonic Sensor Circuit	80			
			5.3.1.1	Waveform At PIN 8 Of IC1	80			
			5.3.1.2	Waveform At Capacitor (C5)	81			
			5.3.1.3	Waveform At PIN 14 Of IC1	82			
			5.3.1.4	Waveform At PIN1 Of IC1	82			
			5.3.1.5	Waveform At PIN 6 Of IC1	83			
		5.3.2	The Spe	eed of Sound at Each Temperature	83			
	5.4	MOD	EL FOR	HOME CONTROL SYSTEM	84			
VI	DISC	CUSSIO	N AND C	CONLUSION	87			
	6.1	OVE	RVIEW		87			
	6.2	DISC	SCUSSION					
	6.3	CON	CLUSION	1	88			
	REF	ERENC	ES		90			
	APP	ENDIX			92			

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
1.1	Project Workflow	3
2.1	Type of Programming Language	9
2.2	Inner Illustration of An Optoisolator	12
2.3	Typical Optoisolator Pinout (TLP521-1)	12
2.4	Diagram of Electromechanical Relay	15
2.5	Internal Connections of HJR-1C (Bottom view)	17
2.6	Illustration of Sensing Process	19
2.7	The Electromagnetic Spectrum	23
2.8	Active Infrared Motion Detector	23
2.9	The 40 KHz Ultrasonic Sensor	24
2.10	Graph of the Speed of Sound at Each Temperature	27
3.1	Program Flow Chart	46
4.1	Home Control System Block Diagram	50
4.2	Block Diagram (Alarm System)	50
4.3	25-way Female D-Type Connector	52
4.4	Centronics Handshake	60
4.5	Simple Bus Organization (Computer to Printer Connection)	61
4.6	Interfacing Schematic Circuit	64
4.7	Relay Schematic Circuit	66
4.8	Transmitter Section Block Diagram for UltraSonic	
	Motion Detector	68
4.9	Receiver Section Block Diagram for UltraSonic	
	Motion Detector	69

FIGURE DESCRIPTION

Wave Signal at Pin 8 of IC1 Receiver Section	70
Main Process	72
Simple Circuit Used for Parallel Port Testing	77
Wave Signal at Pin 8 of IC1 Receiver Section	80
Signal Reflected From TD2 and Amplified By Q2	81
Original Envelope Signal Extracted From R14, D5, C8 and R13	81
Envelope Signal After Amplified by A2	82
Envelope Signal Is Converted To Square Waveform by A3	82
Envelope Signal Is Converted To DC Voltage by	
C12, D3, D4, C3 and R20	83
Graph of the Speed of Sound at Each Temperature	83
Overall Circuits of Home Control System (side view)	85
Overall Circuits of Home Control System (plan view)	85
Model of Home Control System Simulate the Control	
of Electrical Appliances (Lamp and Fan)	86
Model of Home Control System	86
	 Wave Signal at Pin 8 of IC1 Receiver Section Main Process Simple Circuit Used for Parallel Port Testing Wave Signal at Pin 8 of IC1 Receiver Section Signal Reflected From TD2 and Amplified By Q2 Original Envelope Signal Extracted From R14, D5, C8 and R13 Envelope Signal After Amplified by A2 Envelope Signal Is Converted To Square Waveform by A3 Envelope Signal Is Converted To DC Voltage by C12, D3, D4, C3 and R20 Graph of the Speed of Sound at Each Temperature Overall Circuits of Home Control System (side view) Overall Circuits of Home Control System (plan view) Model of Home Control System Model of Home Control System

PAGE

xiii

LIST OF TABLES

TABLE	DESCRIPTIONS
ILLULL	

PAGE

1.1	Work Schedule for PSM 1	4
1.2	Work Schedule for PSM 2	5
2.1	The Speed of Sound at Each Temperature	27
4.1	Address for Parallel Port	52
4.2	Pin Assignments of the D-Type 25 Pin	
	Parallel Port Connector	53
4.3	Comparison of Serial and Parallel Transmission	55
4.4	Centronics Bus Signal	62
5.1	Relation of Bits, Parallel Port Output Pins and	
	the Value of those Bits	78
5.2	Application Table for Home Control System	78
5.3	Distance Can Be Detected By Ultrasonic	79
5.4	Size Object Can Be Detected By Ultrasonic Sensor	79
5.5	Height Can Be Detected From Flour	80

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Schematic Diagram of Alarm System	92
В	UltraSonic Sensor Schematic Circuit	93
С	Layout for UltraSonic Circuit	94
D	Power Supply Circuit Diagram	95
Е	HJR1-2C	96
F	Speed of Sound for Various Gases	100

xv

CHAPTER I

INTRODUCTION

1.1 OVERVIEW

The aims of developing this project, namely Home Control System, is to provide practical experimentation and learning more productive and efficient by harnessing modern technology. This project is created and developed to make works more easy and smooth.

In this project, Quick BASIC language has been selected as the programming language for Home Control System. Quick BASIC is simple, easy to learn and construct. The most important reason is it can be programs in modular forms and its compiler was small enough to fit on a diskette with ample room for programs as well.

In this chapter will cover title and objective, scopes, project workflow and the work schedule of this project.

1.2 TITLE AND OBJECTIVES

The Title of this project is "Home Control System". The main aim of this project is to develop a software and hardware to interface exterior circuit with computer. The software is developed to become simple, easy and user friendly.

Therefore, this project objective can be defined as below:

- To apply the latest technology in the electric device operation in the house such air conditioner and lamp.
- Facilitate operation in implement routine to control electrical appliances by only using computer as the main controller.
- To expedite and enable routine activity implementing by manually and automatically for controlling home electrical appliances.
- To provide hands on skill in designs and programming.
- To enhance knowledge in computer interfacing.

1.3 SCOPES

The scopes of this project are:

- Design hardware to interface computer with exterior circuit using parallel port.
- Using Quick BASIC as the programming language to develop software to interface data between computer and exterior circuit.
- Using Ultrasonic Motion Detector as sensing device for alarm system.
- Construct a model to simulate the Home Control System

1.4 PROJECT WORKFLOW

Firstly, I need to know the fundamental of this project, besides, a good procedure is needed to implement this project from beginning to the end. Here is provided my project workflow shown as Figure 1.1

Figure 1.1 : Project Workflow

C Universiti Teknikal Malaysia Melaka

3

1.5 WORK SCHEDULES

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Title Selection															
Analysis Objectives															
Gather Information															
Further Reading															
Mastering QuickBASIC															
Writing Report															

Table 1.1: Work Schedule for PSM 1

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Writing Software															
Designing Hardware & Prototype							-								
Testing															
Writing Thesis														A.	1
Final Presentation & Submission															

Table 1.2 : Work Schedule for PSM 2

CHAPTER II

PROJECT BACKGROUND AND LITERATURE REVIEW

2.1 OVERVIEW

Progress in Application of computer system to the purposes of digital control, communication functions and data acquisition has been widespread following the first time real-time minicomputer implementation for process measurement and control. Since the integration of these systems may be defined with respect to the design of the computer interfaces, it make remarkable that such design continue to be based essentially on empirical methods and circuit considerations. However, economic and performance accountability requirements have recently prompted the search for improved interface understanding in pursuit of a more quantitative methodology.

Personal computer is being used in control application and data acquisition along with control and data acquisition board installed in the computer. These boards are inserted into the chassis of computer and allow the computer to be connected to exterior circuit, sensors and other monitoring devices much like a voltmeter is connected by the probes to the voltage source being measured. The computer provides many attractive features to the control system and data acquisition such as high clock speed, programming flexibility, mass data storage, low cost, high computational power and a level of sophistication those not available to discrete circuits.

The body of knowledge required of today's technician and engineers includes what previously had been the purview of computer along with the body of knowledge traditionally associated with the field electronics. The electronics technicians today is concern with computer programming, developing software algorithms, interfacing, signal conditioning, as well as operation amplifiers, transistor, electric motors and endless variety of digital integrated circuits.

Interface is connecting input between hardware and software. Interfacing takes advantages of low cost, demonstrates in a down-to-earth style the range of problems in data acquisition for analysis, can rapidly analyze the results and display the results in the computer, high-speed input/output ports and compatible with high-level languages[6].

In this chapter, will cover on project background, literature review and some benefits of this project.