"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor Mechanical Engineering (Structure & Material)"

Signature	:
Name of Supervisor	:
Date	·

THE STUDY OF PALM OIL FIBER FOR FILTRATION APPLICATION

YONG POH YEE

This report is submitted in partial fulfillment of the requirements for the award of the Degree of Bachelor of Mechanical Engineering (Structure and Material)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2010

PENGAKUAN

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tandatangan	:
Nama Penulis	: YONG POH YEE
Tarikh	:

DECLARATION

"I hereby, declare this thesis is the result of my own research except as cited in the references"

Signature	:
Author	: YONG POH YEE
Date	:

Specially dedicated to my beloved family and friends

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to most honored supervisor, Mr. Faizil Bin Wasbari in my Universiti Teknikal Malaysia Melaka (UTeM) for suggesting this project and providing guidance throughout the course of this Project Sarjana Muda. He has given me considerable freedom and shown patience as I pursued the idea development in this projects. Thanks again to him for reviewed the entire manuscript of this project and provided me with valuable feedback and gave me a lot of good advices and best encouragement for me to completed the Project Sarjana Muda I. Moreover, he also had shared his golden time and experiences to guide me in this research.

I would like to especially grateful to my assistant supervisor, Madam Siti Hajar Binti Sheikh Md Fadzullah who gave me the guidance to improve the understanding to this project. Special appreciation goes to my head of department of structure & material, Mr. Wan Mohd Farid who has willing to spend his convenience times for giving advises and useful information that can be applied in this project.

My appreciations are extended to all who provided helpful suggestions for improvements of this project. Without all the helps provided, my project might not proceed smoothly. Lastly, thank you to all.

ABSTRAK

Pokok minyak sawit adalah sejenis tumbuhan biasa di Malaysia tetapi ia adalah satu asset yang memainkan peranan penting dalam pembangunan ekonomi. Malaysia adalah pengeluar terbesar dan pengeksport produk minyak kelapa sawit dalam dunia ini dan sawit pembuatan sektor adalah satu industri utama dalam negara ini. Sementara itu, Tandan-tandan Buah Kosong (EFB) adakah produk sisa yang dapat diperolehi selepas tandan-tandan buah itu ditekan pada kilang minyak dan minyak itu mengambil. Serat kelapa sawit dikeluarkan daripada bungkusan vaskular kelapa sawit dalam tandan buah kosong (EFB). Oleh itu, serat sawit dengan banyaknya boleh didapati di Malaysia. Dalam turas pengeluaran industri, bahan yang paling biasa digunakan untuk pengeluaran penapis adalah gentian sintetik yang dilalui proses-proses kimia. Dalam tahun-tahun kebelakangan ini, banyak minat dan perhatian orang awam telah dicetuskan bagi membangunkan bahan-bahan komposit daripada serat semula jadi kerana masalah isuisu pencemaran alam sekitar dan penyusutan dan ketakpastian kira-kira sumber petroleum. Tesis ini bertujuan untuk mengkaji kelapa sawit serat dan ciri-ciri biasanya dalam penggunaan penurasan industri. Ia mendedikasikan memerhati serat struktur ukuran yang berbeza dan membuat perbandingan tentang perbezaan mereka dalam keadaan saiz pori melalui ujian porositas dan juga meletup ujian kekuatan yang digunakan untuk mengetahui kekuatan meletup yang serat kelapa mampu menahan. Penelitian ini mengungkapkan bahawa serat kertas berasaskan sawit memberikan kekuatan meletup lebih tinggi dan lebih besar dalam saiz pori berdasarkan penilaian ujian di mana ujian standard untuk menyiasat prestasi Filtrasi adalah merujuk pada Standard ASHRAE 52,1 dan 52,2. Kerja ini mengesahkan bahawa kertas serat kelapa akan awet dan tahan lama kerana kekuatan tinggi dari bahan kelapa serat berbanding dengan kertas penapis debu sekarang. Selain itu, beberapa perbaikan juga dianjurkan untuk membuat pendekatan lebih ke penapis hari ini.

ABSTRACT

Palm oil tree is a common type of plant in Malaysia but it is an asset that plays important role in economy growth. Malaysia has been the largest producer and exporter of palm oil products in the world and thus making oil palm sector one of the major industries in this country. Meanwhile, Empty Fruit Bunches (EFB) is the natural waste products obtained after the fruit bunches are pressed at oil mills and the oil extracted. Oil Palm Fiber is extracted from palm oil vascular bundles in the empty fruit bunch (EFB). Hence, the oil palm fiber is abundantly available in Malaysia. In filter manufacture industry, the material that is most frequently used to manufacture a filter is synthetic fiber which is created by chemical processes. In recent years, much interest has been triggered to develop composite materials from natural fiber due to the intensified problem in environment pollution issues and the depletion of and uncertainty about petroleum resources. This thesis is purposed to study the palm oil fiber and its characteristic properties in filtration application industry. It is dedicated to observe the fiber structure of different size of and make comparison on their differences in pore size condition through porosity testing and also the burst strength testing which used to know for bursting force that palm fiber able to resist. This study revealed that the palm fiber based paper provides the higher burst strength and greater in pore size based on the evaluation of testing where the testing standard to investigate the filtration performance is refer to the ASHRAE Standard 52.1 and 52.2. This works verified that palm fiber made paper will be durable and long lasting to use due to the high strength of palm fiber material in comparison with current dust paper filter. Besides, some improvements are well recommended to make it more approach to the current pre-filter.

TABLE OF CONTENT

CHAPTER	CON	NTENT	PAGE
	PEN	GAKUAN	ii
	DEC	CLARATION	iii
	DED	DICATION	iv
	ACK	KNOWLEDGEMENT	V
	ABS	TRAK	vi
	ABS	TRACT	vii
	ТАВ	BLE OF CONTENT	viii
	LIST	Г OF TABLES	xiii
	LIST	F OF FIGURES	xiv
	LIST	Г OF SYMBOLS	xviii
	LIST	Γ OF ABBREVIATIONS	xix
	LIST	Γ OF APPENDIX	xx
CHAPTER 1	INT	RODUCTION	1
	1.1	Background Study	1
	1.2	Problem Statement	3
	1.3	Objective	4
	1.4	Scope	4

CHAPTER	CON	TENT		PAGI
CHAPTER 2	LITI	ERATUR	RE REVIEW	5
	2.1	Introdu	iction	5
	2.2	Air Fil	tration Fundamentals	5
		2.2.1	Mechanical Air Filters	6
		2.2.2	Electrostatic Filter	7
		2.2.3	Activated Carbon Filters	9
	2.3	Air Fil	tration System	11
		2.3.1	Pre Filter	11
		2.3.2	Filtration Mechanism	12
	2.4	AHU (Air Handling Unit)	15
	2.5	Americ	can Society of Heating, Refrigeration, an	ıd
		Air Co	nditioning Engineers (ASHRAE)	16
		2.5.1	MERV-filter efficiency simplified	17
	2.6	Fiber N	Aaterials	18
		2.6.1	Natural Fiber	19
			2.6.1.1 Source of Natural Fiber	19
			2.6.1.2 Application of Natural Fiber	24
	2.7	Palm C	Dil in Malaysia	26
		2.7.1	History of Malaysia Palm Oil	27

2.7.2 Palm Oil Tree

2.7.3 Palm Oil Fiber

2.7.2.1 Palm Oil Fresh Fruit Bunches

2.7.3.1 Advantage of Palm Oil Fiber

2.7.4 Characteristic of Palm Oil Fiber

2.7.4.1 Mechanical Properties

2.7.4.2 Physical Properties

2.7.4.3 Thermal Properties

2.7.4.4 Chemical Composition

2.7.3.2 Application of Palm Oil Fiber (EFB) 33

E

27

29

31

32

34

35

38

42

45

CHAPTER	CON	TENT	PAGI
CHAPTER 3	MET	THODOLOGY	47
	3.1	Information Searching & Literature	48
	3.2	Selection Types of Characteristics to be	
		Conducted	49
	3.3	Prepare Working Procedure	49
	3.4	Sample Preparation	49
	3.5	Testing	51
	3.6	Results and Analysis	51
	3.7	Report Writing	51
CHAPTER 4	SEL	ECTION OF FILTRATION	52
	CHARACTERISTICS		
	4.1	Selection of Characteristic	52
	4.2	Selection Criteria	53
	4.3	Decision	54
CHAPTER 5	SAM	IPLE PREPARATION	55
	5.1	Introduction	55
	5.2	Process of Making the Sample	56
	5.3	Pulp Mill	57
		5.3.1 EFB Fiber Screening Process	57
		5.3.2 Shredding Process	57
		5.3.3 Sterilization Process	58
		5.3.4 Refining Process	58
		5.3.5 Mechanical Pulping Process	59
	5.4	Paper Mill	59
		5.4.1 Forming Process	59
		5.4.2 Pressing Process	60

Х

CHAPTER CONTENT

PAGE

5.4.3 Drying Process 60

	5.4.4 Calendering Process	61
5.5	Technical Specification of Palm Paper	62

CHAPTER 6	TESTING		64
	6.1	Introduction	64
	6.2	Pre-Preparation	64
		6.21 Sample Size Cutting	65
		6.22 Thickness Measurement	66
	6.3	Digital Burst Strength Testing	66
		6.3.1 Specification of Digital Burst Stre	ngth
		Machine	67
		6.3.2 Procedures	67
	6.4	Pore Size Test	70
		6.4.1 Procedure	71
	6.5	Air Permeability Test	73
		6.5.1 Procedure	73
CHAPTER 7	RES	RESULT AND ANALYSIS	
	7.1	Introduction	74

7.1	Introduction	74
7.2	Specification of Sample Size Cutting	75
7.3	Thickness Measurement	76
	7.3.1 Data Analysis for Thickness	
	Measurement	77
7.4	Digital Burst Strength Testing	79
	7.4.1 Data Analysis for Digital Burst	
	Strength Testing	80
7.5	Pore Size Testing	81

CHAPTER	TER CONTENT		
		7.5.1 Data Analysis for Pore Size Testing	84
CHAPTER 8	DISC	CUSSION	86
	8.1	Sample Preparation	86
	8.2	Digital Burst Strength Testing	87
	8.3	Pore Size Testing	89
	8.4	Air Permeability Testing	90
CHAPTER 9	CON	CLUSION	92
	9.1	Overall Conclusion	92
	9.2	Recommendation	95
	REF	ERENCES	96
	APP	ENDIX A	100
	APP	ENDIX B	103
	APP	ENDIX C	106

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Minimum efficiency reporting value (MERV) parameters	17
2.2	Mechanical properties of natural fibers	23
2.3	Ideal composition of palm Oil fruit	30
2.4	Mechanical Properties of Some Important Natural Fibers	35
2.5	Tensile properties of single natural fiber	37
2.6	Diameter of other natural fibers	39
2.7	Chemical composition of oil palm fibers and some	45
	important natural fibers	
7.1	The thickness of sample before testing	76
7.2	The thickness of sample after burst strength testing	76
7.3	The thickness of sample after pore size testing	77
7.4	Data of burst strength test	79
7.5	Data of pore size test	81

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	The palm oil production in Malaysia, Indonesia and	
	World	1
2.1	The air pre-filter, pleated media air filter and HEPA	
	air filter	7
2.2	The electronic filter	8
2.3	Activated carbon filters	9
2.4	Carbon filter regeneration	10
2.5	Filtration mechanism (Cross sectional view)	12
2.6	Fibers captured particles	14
2.7	Size range of particles	15
2.8	Components of an air handling unit (AHU)	16
2.9	Fiber Materials	18
2.10	Single fiber and fiber bundle	18
2.11	Jute plant and jute fibers	20
2.12	Hemp plant and hemp fibers	20
2.13	Green kenaf	20
2.14	Flax plant and flax fiber	21
2.15	Sisal plant and sisal fibers	21
2.16	Classification of natural fiber	22
2.17	Automotive components of Mercedes A-200 made	
	from different natural fiber reinforced composites	25
2.18	The Oil Palm Tree	28

NO. TITLE

PAGE

XV

2.19	Fresh Fruit Bunches	29
2.20	(a) Individual spikelet, (b) detached ripe fruit,	29
	(c) longitudinal section of fruit showing mesocarp and	
	white kernel flesh in the central nut	
2.21	Cross section of an oil palm fruit	30
2.22	Empty Fruit Bunches	31
2.23	Palm oil fiber (from EFB) from a palm oil mill in Malaysia	32
2.24	Uses of oil palm byproducts and biomass in food and	
	Manufacturing industries	34
2.25	Stress – strain behaviour of the single EFB fiber	36
2.26	Young's modulus versus EFB fiber diameter	37
2.27	Zeiss optical microscopic image of the cross- section of	
	a single EFB fiber	39
2.28	(a) Untreated EFB, (b) EFB-2% NaOH, (c) EFB-Silane,	
	(d) EFB-95% alcohol	40
2.29	Pore size distributions of activated carbons from oil	
	palm fiber and shell	42
2.30	Scanning electron micrograph of untreated oil palm empty	
	fruit bunch surface fiber (X 400)	44
2.31	Scanning electron micrograph of oil palm mesocarp-fiber	
	surface (X 400)	44
2.32	A basic representation of water sorption in oil palm fibers	45
3.1	Flowchart of the methodology	47
3.2	Process flows of the making of palm paper	50
5.1	Process flows for the making of palm paper	55
5.2	Shredding machine	57
5.3	Sterilization machine	58
5.4	Fine palm fiber after process refining	58
5.5	Forming machine (cross sectional view)	59

NO.	TITLE	PAGE
5.6	Press Machine (cross sectional view)	60
5.7	The calender stack machine (cross sectional view)	61
5.8	Final product of palm paper	61
5.9	Palm paper roll (left figure) and palm paper sheet (right figure)	62
5.10	Palm paper sheet with water resistance (left in Figure)	
	and with non water resistance (right in Figure)	63
6.1	Cut the sample into desire shape size by using bow compass	65
6.2	Thickness measurement of sample paper	66
6.3	Burst strength test machine	66
6.4	The sample filter paper is clamped and tightened	67
6.5	Fix specimen pressure screw	68
6.6	LCD indicator and ZO/TH button	68
6.7	The sample paper before broken (left Figure) and after broken	
	(right Figure)	69
6.8	Air permeability & pore size test machine	70
6.9	Sample filter cut in disc size for pore size test	71
6.10	Pour methyl alcohol for $1/3$ of the hole of sample holder cover	71
6.11	The sample paper wetted by methyl alcohol after pore size test	72
6.12	Display screen of air permeability machine	73
7.1	Dust paper filter (FC8046) Philips brand in left Figure	
	and dust filter (C-20E) Panasonic brand in right Figure	75
7.2	Palm paper	75
7.3	The graph of burst strength for two types of palm paper	
	and current dust paper filters	79
7.4	The graph of average value in burst strength compare	
	among four type of paper filter	80
7.5	The graph of average mean pore size value compare	
	among four samples	82

NO.	TITLE	PAGE
7.6	The graph of average differential pressure value compare	
	among four samples	83
7.7	The graph of differential pressure versus mean pore size	
	in average among the four types of sample	84
8.1	The palm paper sample with water resistance (Left Figure)	
	and palm paper without water resistance (Right Figure)	87
8.2	The current dust paper filters produce by Philips brand	
	(Left Figure) and current dust paper filters produce by	
	Panasonic brand (Right Figure)	87
8.3	Dust paper filter of Philips brand (left Figure) and dust paper	
	filter of Panasonic brand (right Figure) after burst strength test	88
8.4	Palm paper with water resistance (left Figure) and without	
	water resistance (right Figure) after burst strength test	88
8.5	Bubbles appeared all over the surface of wetted media	89

LIST OF SYMBOLS

ΔP	=	Differential Pressure, kgf/cm ²
Р	=	Differential Pressure Across the Medium, Pa
L	=	Depth or Thickness of the Bed or Medium, m
Q	=	Volumetric Flow Rate of Fluid, m ³ /s
μ	=	Kinematic Viscosity of the Fluid, Ns/m ²
А	=	Area Occupied by Flow, m ²

LIST OF ABBREVIATIONS

AHU	=	Air Handling Unit
ASHRAE	=	American Society of Heating, Refrigeration, and Air Conditioning
		Engineer
CPO	=	Crude Palm Oil
EFB	=	Empty Fruit Bunches
ELV	=	End of Life Vechicle
EU	=	European Union
FFB	=	Fresh Fruit Bunch
HVAC	=	Heating Ventilating and Air Conditioning
MERV	=	Minimum Efficiency Reporting Value
OD	=	Outer Diameter
OPEFB	=	Oil Palm Empty Fruit Bunch
PSE	=	Particle Size Efficiency
SEM	=	Scanning Electron Microscope
USDA	=	U. S. Department of Agriculture

LIST OF APPENDIX

NO.	TITLE	PAGE
	APPENDIX A	100
A. 1	Gantt Chart For PSM I	101
A. 2	Gantt Chart For PSM II	102
	APPENDIX B	103
B. 1	Natural Oil Palm Fibre Specifications	104
B. 2	Application Guidelines	105
	APPENDIX C	106
C. 1	Test Report 1	107
C. 2	Test Report 2	108

CHAPTER 1

INTRODUCTION

1.1 Background Study

The oil palm sector is one of the major industries in Malaysia. Since the 1970s, Malaysia has been the largest producer and exporter of palm oil products in the world. Palm oil industry in Malaysia is currently the number 2 export commodity in the country. According to the Figure 1.1 USDA report, the palm oil production in Malaysia is increasingly year by year start from 1979.

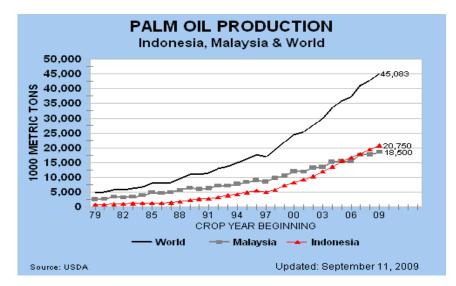


Figure 1.1: The palm oil production in Malaysia, Indonesia and World (Source: www.cmegroup.com (2009))

Based on the intertek report, the export of oil palm was 1.12 million tons till the July 2009 in Malaysia. Oil palm industry provides job opportunity directly to 500 thousand people and indirectly to 2 million people. Oil palm plays an important role in Malaysia economy.

The Empty Fruit Bunches (EFB) is one of the waste products produced from palm oil. In total of renewable biomass (trunks, fronds, shells, palm press fiber and the empty fruit bunches) are produced each year, the empty fruit bunches (EFB) represent about 23% of this total. The Empty Fruit Bunches (EFB) is the residue left after the fruit bunches are pressed at oil mills and the oil extracted. In more detail, an average oil palm mill can handle about 100 metric ton of fresh fruit bunches daily. At the mills where oil extraction takes place, solid residues and liquid wastes are generated. The solid residues, mainly EFB are more than 20% of the fresh fruit weight.

EFB is a suitable raw material for recycling because it is produced in large quantities in localized areas. Normally in the past, it was often used as fuel to generate steam at the mills. The EFB is now used mainly as mulch. Placed around young palms, EFB helps to control weeds, prevent erosion and maintain soil moisture. The EFB is composed of 45% to 50% cellulose and about equal amounts (25% to 35%) of hemicellulose and lignin. Hence, EFB is fibrous kind of material and the palm oil fibers stick together to form vascular bundles. The EFB was very fibrous. Even when it was piled up to more than 1.5 m in height, the bottom mass was still loose and porous. Therefore, air can pass through freely with this type of characteristics. Due to the advantages, we must fully use the waste product to convert it into useful final quality products or to diversify some product.

1.2 Problem Statement

Basically, the pre-filter in current market are divided to four main types; there are washable filter, disposable filter, HEPA filter and carbon filter. Most of the current pre-filter for Air Handling Unit (AHU) is made by synthetic fibers such as polycarbonate fibers, pleated media or polyurethane foam. Malaysia is the largest producer and exporter of palm oil products in the world. Moreover, the palm oil will come out some waste product after the fruit bunches are pressed at oil mills and the oil extracted. One of the waste products is the Empty Fruit Bunches (EFB).

As the information in market listed, it is still have no a pre-filter made by palm oil fiber which used for HVAC system. Hence, we should probably make use on this source. Natural fibers are the nature fiber materials which is environment friendly. Due to the cost profit, natural fibers is a good choice where total cost of natural fibers made product will be less than any other type of fiber utilized in the industry. Therefore, the natural fiber made product is much favorable due to the phase of profit. Furthermore, the process from uninstall a filter for cleaning purpose until install back in air handling unit (AHU) is very take time. Principally, it is not fulfill the concept of business due to the waste of human time and cost. But for the palm oil fiber filter, we can just replace a palm oil fiber made new filter which is low cost. For example, the AHU room and the cleaning room is large distance apart, we are directly replace a low cost new filter is much better rather than clean or wash a filter and setup back the filter again. Based on this, the delivery product time, cleaning time and setup/assembly time can be reduce or save.