"I admit that I have read this report and from my opinion that it is suffice from aspect of scope and quality for a purpose of awarding Bachelor of Mechanical Engineering (Thermal-Fluid)".

> Signature Supervisor Name Date

AHMAD ANAS 14/12/05 YUSOF

THE DEVELOPMENT OF SMALL SCALE HOVERCRAFT UNIT

ISMAIL BIN NAWI @ MUHAMMAD

This report was handed to Faculty of Mechanical Engineering to fulfill parts of the requirement for awarding the Bachelor of Mechanical Engineering (Thermal-Fluid)

Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

November 2005

ADMISSION

" I admit that this report was done all by myself except the summary and passage that I have clearly stated the source on each one of them"

> Signature Author Name Date

Ismail b. Now @ Muhammad 12/12/2005

ii

This work is dedicated to my beloved mother and all of my family. Your loves are forever...

To all my classmates. do remember our friendships. It was a happy moment to be with you guys in these past few years...

Lastly to my sweetheart. I love you very much and wish that we're meant to be together...forever

ACKNOWLEDGEMENT

I would like to take this opportunity to say thank you to my dearly supervisor, Mr. Ahmad Anas bin Yusof for his guidance and advice in order to successfully complete this project.

Thanks to fellow FKM lecturers and technicians for their help. I would also thankful to my classmates, my housemate and especially to Azizi bin Adnan, Ahmad Faizol bin Ismail and Azril bin Othman for their technical involvement and support in this project.

Special thanks to my beloved family for supporting me on this project, financially and mentality until I've finished this project and thesis. Alhamdulillah, all praise to ALLAH with his blessings, I finally finished this project successfully.

ABSTRACT

This thesis presents the development of a small-scale hovercraft unit which providing full hovercraft basic functions and had been carried out by the author to fulfillment of the requirement for the award of the degree of bachelor of Mechanical Engineering. This designed hovercraft which has two stage of development and include two models. The first model is for PSM 1 and the second and fully functions model is for PSM 2.

Basically, the hovercraft design and construction process is quite similar to the boat or aircraft design. In this report, I had made all the required analysis's and used some formulas for thrust and lift, drag components calculations and other important parameters to realization the development of these air cushion vehicle models. Also, the planned model 3D drawing of this hovercraft with their general arrangement was completed and attached together with this thesis. The aim of this report is to provide the literature study, all necessary methodology, constructions and analysis's as part of the requirement in submitted the report to the PSM supervisor and shall fulfill the project objectives and scopes.

Even though hovercraft research and development is still new technology in Malaysia and no domestic consumption in this technology, through this development project, it shall help this industry a step further because this project can be categorized as successful and working as expected. Finally, I wish KUTKM will give the priority and budget to anyone who interest to continue to improve this project and conduct R&D for the development of this technology in the near future.

ABSTRAK

Thesis ini mengisarkan tentang pembangunan hoverkraft bersaiz kecil yang mana menampilkan fungsi-fungsi asas sebuah hoverkraft yang dijalankan bagi memenuhi syarat penganugerahan Sarjana Muda Kejuruteraan Mekanikal. Proses merekabentuk dan membangunkan model hoverkraft ini tarbahagi kepada dua tahap dan melibatkan pembinaan dua model. Model yang pertama adalah untuk PSM 1 dan model yang kedua untuk PSM 2.

Secara asasnya, proses merekabentuk and pembinaan hovekraf adalah lebih kurang sama dengan bot atau pesawat. Di dalam laporan ini, saya telah membuat semua analisis yang diperlukan dan menggunakan beberapa formula bagi pengiraan daya tujah, daya angkat, komponen seretan dan beberapa parameter penting yang lain bagi merealisasikan pembangunan model kenderaan kusyen udara ini. Lukisan 3 dimensi untuk model juga di sediakan bersama thasis ini lengkap bersama dimensidimensi dan urutannya secara am. Matlamat laporan ini adalah untuk menyediakan kajian literatur, kaedah-kaedah yang diperlukan, pembinaan dan analisa-analisa sebagai sebahagian daripada keperluan untuk laporan yang perlu dihantar kepada penyelia PSM dan memenuhi objektif-objektif dan skop-skop projek.

Walaupun penyelidikan dan pembangunan hoverkraf adalah sesuatu yang masih baru di Malaysia dan tiada lagi kegunaan secara domestic di sini, melalui pembangunan projek ini, ianya akan membantu industri in selangkah kehadapan kerana projek ini adalah boleh dikategorikan sebagai berjaya dan berfungsi seperti yang dijangkakan. Akhirnya, saya harap agar KUTKM dapat memberi keutamaan dan suntikan modal kepada sesiapa yang berminat menyambung dan memperbaiki projek ini serta mengendalikan pembangunan dan penyelidikan dalam teknologi ini di masa hadapan.

TABLE OF CONTENTS

		Page	
ADMISSION		ii	
DEDICATION	iii		
ACKNOWLED	ACKNOWLEDGEMENT		
ABSTRACT		v	
ABSTRAK		vi	
TABLE OF CO	NTENTS	vii	
LIST OF TABL	ES AND GRAPH	x	
LIST OF FIGU	RES	xi	
LIST OF SYMB	BOLS	xiii	
LIST OF APPE	NDIX	xv	
CHAPTER 1 - I	INTRODUCTION	1	
1.1 Pr	reface	1	
1.2 Pr	oject arrangement	2	
1.3 Ob	bjectives	3	
1.4 Pro	oject Scopes	3	
1.5 Pro	oblem Identified	4	
1.6 De	esign Requirement	4	
1.7 Ex	spected Result	5	
CHAPTER 2 - L	ITERATURE STUDY	6	
2.1 WI	hat is Hovercraft?	6	
2.2 Pre	esent Hovercraft	9	
2.3 En	vironmental Impact of Hovercraft	10	
2.4 Ty	pes of Hovercraft	12	
2.4	4.1 Amphibious hovercraft	12	
2.4	1.2 Non-amphibious hovercraft	13	
2.4	4.3 Semi-amphibious hovercraft	13	

2.5	Hove	rcraft Classification	14
	2.5.1	Small hovercraft	14
	2.5.2	Medium hovercraft	15
	2.5.3	Large hovercraft	15
	2.5.4	Multi-purpose hovercraft	16
2.6	Advar	ntages and Limitation	19
2.7	Mater	ials	21
2.8	Cost		22
CHAPTER	3 – ME'	THODOLOGY	23
3.1	Hull S	Structure Design	23
3.2	Thrus	t System	25
3.3	Drag	Components	27
	3.3.1	Aerodynamic or Profile Drag	28
	3.3.2	Momentum Drag	28
	3.3.3	Induced Drag	29
	3.3.4	Wave Making Drag	29
	3.3.5	Skirt Drag	31
	3.3.6	Side Hull Drag	32
3.4	Lift Sy	ystem	33
3.5	Air Cu	ushion System	34
	3.5.1	Non-Skirted Air Cushion Suspension System	34
	3.5.2	Plenum Chamber System	35
	3.5.3	Peripheral Jet Curtain Air Cushion Suspension System	35
	3.5.4	Recirculation System	36
	3.5.5	Rigid Sidewall Air Curtain System	38
	3.5.6	Air Bearing System	39
3.6	The Fl	exible Skirt	40
3.7	Contro	ol System	44
	3.7.1	Thrust Reversers	48
CHAPTER -	4 – DEV	ELOPMENT AND CONSTRUCTION	50
4.1		inary Design Analysis	50
4.2		ural Design Concept	53

C Universiti Teknikal Malaysia Melaka

viii

	4.3	Hard S	Structure Construction	55
	4.4		Design	
	4.5		Design	58
	4.6		ompartment Design	60
	4.7		ller / Fan Design	63
	4.8		ol System Design	64
	4.9	Power		67 69
				09
СНАР	TER	5 – ANA	LYSIS AND COST	71
	5.1	Genera	al Calculation	71
		5.1.1	General Parameter	72
		5.1.3	First Model Calculation	73
		5.1.3	Second Model Calculation	74
	5.2	Lift Sy	vstem	76
		5.2.1	Lift Power	77
		5.2.2	Lift Fan Diameter	78
		5.2.3	Vent Hole	79
	5.3	Propul	sion System	80
		5.3.1	Drag Calculation	81
		5.3.2	Thrust Power	86
	5.4	Power	Plant Selection	87
	5.5	Cost		90
		5.5.1	Hull Structure Cost	90
		5.5.2	Flexible Skirt System Cost	92
		5.5.3	Control System Cost	93
		5.5.4	Power Plant and Propeller Cost	94
		5.5.5	Other Cost	96
		5.5.6	Total Cost	97
CILLE	TED			
СНАР			CLUSION AND RECOMMENDATION	98
	6.1	Conclu		98
	6.2		mendation	100
REFEI				102
APPE	NDIX			105

LIST OF TABLES AND GRAPH

x

Table 2.1:	Advantages and disadvantages of the hovercraft	20
Table 4.1:	First model basic dimension	50
Table 4.2:	Second model basic dimension	51
Table 4.3:	Specification obtained for first model	51
Table 4.4:	Specifications obtained fir second model	52
Table 4.5:	FRP material characteristic (E.T. Techtonics Inc.)	54
Table 5.1:	Hovercraft general calculations result for both models	77
Table 5.2:	Calculated drags value within speed	85
Table 5.3:	Hull materials cost for first model	90
Table 5.4:	Hull materials cost for second model	91
Table 5.5:	Mold materials cost for second model	91
Table 5.6:	Flexible skirt system cost for first model	92
Table 5.7:	Flexible skirt system cost for second model	92
Table 5.8:	Control system cost for first model	93
Table 5.9:	Control system cost for second model	94
Table 5.10:	Power plant and propeller cost for first model	94
Table 5.11:	Power plant and propeller cost for second model	95
Table 5.12:	Other cost	96
Table 5.13:	Total cost for both model	97
Graph 5.1:	Drag (N) agains speed (km/h) of the hovercraft	85

LIST OF FIGURES

		Page
Figure 1.1:	Project Arrangement	2
Figure 2.1:	Simple example of hovercraft	7
Figure 2.2:	Simple hovercraft air cushion supply	7
Figure 2.3:	SRN6 hovercraft	13
Figure 2.4:	Small hovercraft – Flying Fish F25	14
Figure 2.5:	Medium hovercraft – H181	15
Figure 2.6:	Large hovercraft – SR.N4. Princess Margaret	16
Figure 3.1:	Cross section of SR.N4.	24
Figure 3.2:	Hovercraft static thrust horsepower	26
Figure 3.3:	Steady forward motion of hovercraft over calm water	29
Figure 3.4:	Cushion wave making drag coefficient for a rectangular air	
	cushion over calm water against Lc/Bc	30
Figure 3.5:	Characteristic of drag of an air-cushion vehicle	31
Figure 3.6:	Plenum chamber system	35
Figure 3.7:	Peripheral jet curtain-air cushion suspension system	36
Figure 3.8:	The labyrinth system	36
Figure 3.9:	The non-energized recirculation system	37
Figure 3.10:	The energized recirculation (inward) system	37
Figure 3.11:	The energized recirculation (outward) system	38
Figure 3.12:	Air bearing system	39
Figure 3.12:	Trunked skirt	40
Figure 3.13:	Convoluted skirt	41
Figure 3.14:	Bag jetted skirt	42
Figure 3.15:	Segmented skirt	43
Figure 3.15:	Bag skirt with finger extension	43
Figure 3.17:	Plenum chamber skirt	44
Figure 3.18:	Rudder (a) single vane (b) multiple vanes	45
Figure 3.19:	Arrangement of vanes for propulsion	46

Figure 3.20:	Other method for directional control of air-cushion vehicles	47
Figure 3.21:	Reverse-thrust bucket system, viewed from above	48
Figure 4.1:	Hovercraft lift calculator - Input data section	52
Figure 4.2:	Hovercraft lift calculator - Calculated result section	53
Figure 4.3:	FRP coating into mold cavity	57
Figure 4.4:	Finger skirt arrangement	59
Figure 4.5:	One of the finger skirt segment	59
Figure 4.6:	Schematic representation of ducted fan	60
Figure 4.7:	First method for calculating duct splitter area	62
Figure 4.8:	Second method for calculating duct splitter area	63
Figure 4.9:	120mm triple blade 12V fan	65
Figure 4.10:	10x6 sized pusher type propeller	66
Figure 4.11:	Master Airscrew 11x5 and 10x6 thrust characteristic	66
Figure 4.12:	DC fan speed controller schematic diagram	67
Figure 4.13:	Futaba MJ 2PH-2 Transmitter and S3003 servo	68
Figure 4.14:	ASP .40 engine 6.5cc 1.35 hp	70
Figure 5.1:	38mm hole eutting procedure on the lower hull section	80
Figure 5.1:	Drag coefficient for various hovercraft models	82
Figure 5.2:	Cw plotted against Froude Number (Fr) for constant lc/Bc	84

LIST OF SYMBOLS

3

			Page
Р	=	Hovercraft total power (kW)	25
W	÷	Hovercraft weight (tons)	25
$\mathbf{D}_{\mathbf{p}}$	=	Profile or aerodynamic drag	28
D _m	=	Momentum drag	28
Di	=	Induced drag	29
Ds	=	Skirt drag – total	31
\mathbf{D}_{sw}	=	Skirt drag – wetting drag	31
Dswm	=	Skirt drag – wave making drag	31
D _{srw}	=	Skirt drag – rough water drag	31
D_h	=	Side hull drag	32
Q	=	Lift air flow, m3/s	33
L	=	Skirt footprint perimeter, m	33
W	#	Total weight, N	33
$\mathbf{S}_{\mathbf{c}}$	=	Footprint area, m2	33
H_{c}	=	Cushion pressure, cm	33
K	÷	Constant, 0.0272	33
Н	=	fan power, kW	34
Р	=	cushion pressure, Pa	34
Q	=	fan airflow, m3/s	34
m	=	Maximum moment of the structure	54
У	=	Distend from the keel to central of gravity of the structure	54
1	=	Second moment of inertial.	54
Ac	=	Area of air cushion	72
Pc	=	Air cushion pressure	72
Q	=	Volume air flow from gap	72
Ag	=	Area of air gap	72
Pr	=	Perimeter (peripheral length)	72
Hg	=	Height of air gap	72

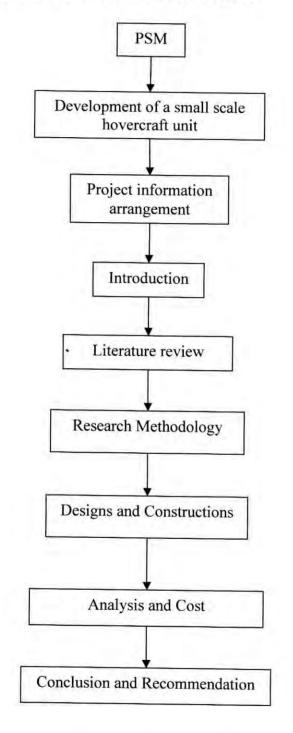
Ve	=	Velocity of escaping air	72
Wt	=	Total craft weight	72
ρ	Ŧ	Air density @ sea level (1.227 kg/m ³)	72
yf	=	Fan Efficiency	72
Hp	=	Horse power	72
Ah	=	Hull Area	72
W	=	Width	72
L	=	Length	72
Pf	=	Fan pressure	77
PL	=	Lift fan power	77
D_A	=	Aerodynamic drag	81
ρ	=	Air density @ 20° C = 1.227 kg/m ³	81
V	=	Hovercraft speed (m/s)	81
A_f	=	Hovercraft frontal area (m ²)	81
C_{Dp}	=	Coefficient of aerodynamic drag	81
h	=	Hover air gap	83
C_w	=	Wave making drag coefficient	83
W	=	Hovercraft width (m)	83
g	=	Gravity (m/s ²)	83
l_c	=	Cushion length (m)	83
B_c	=	Cushion breadth (m)	83
T_v	-	Thrust value (N)	86
T_s	=	Static thrust (N)	86

LIST OF APPENDIXES

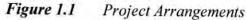
		Page
Appendix 1:	Drawing – First model body	105
Appendix 2:	Drawing – First model skirt	106
Appendix 3:	Drawing – Tri blade fan	107
Appendix 4:	Drawing - Second model body	108
Appendix 5:	Drawing – Engine mounting	109
Appendix 6:	Drawing – Rudder	110
Appendix 7:	Drawing - Skirt segment	111
Appendix 8:	The exploded view of ASP .61 engine	112
Appendix 9:	ASP engine dimension	113
Appendix 10:	Bertin Terraplane	114
Appendix 11:	Hovercraft formula guide	115
Appendix 12:	Hovercraft formula guide cont.	116
Appendix 13:	Hovercraft formula guide cont.	117
Appendix 14:	Hovercraft formula guide cont.	118
Appendix 15:	Hovercraft formula guide cont.	119
Appendix 16:	Picture of project	120
Appendix 17:	Picture of project cont.	121
Appendix 18:	Picture of project cont.	122
Appendix 19:	Picture of project cont.	123
Appendix 20:	Picture of project cont.	124

CHAPTER 1

INTRODUCTION


1.1 Preface

The air cushion vehicle concept can be traced back in 1716. However, the practical form of today's hovercraft is in 1955. Since then, many types of land, marine and amphibious air cushion vehicles have developed [Alan Blunden, 1987]. All about hovercraft are described in other chapters. The topics are covered from first principles to the state-of-the-art, with proper reference to the literature.


This project is focus on development of a small-scale hovercraft unit and will be discussed later. With these specialized applications of amphibious hovercraft, its can be used over land, water or even on rough ground. Among them were used for search and rescue, patrol, law enforcement and others.

The design must consider the stabilization and thrust system for propulsion, depending on type of propeller and power plant (engine or electric motor) that will be used. This decision is made after all the forces acted to hovercraft were determined.

1.2 Project Arrangement

Overall the project activities can be illustrated as below:

1.3 Objectives

The objectives of this project are:

- a) To develop a small scale hovercraft unit for educational and research purpose
- b) To develop an appreciation of system engineering concepts in BMCT student.
- c) To promote study in practical applications of engineering and scientific principles.
- d) To assume primary weight, resistance and principles dimension for this hovercraft
- e) To design hovercraft suitable to their specialized applications (amphibious)
- f) Suggestion for choosing material and power plant that match to this hovercraft

1.4 Project Scopes

Scopes for this project as follow:

- a) To find the design fundamental for a small hovercraft.
- b) Make the research for small hovercraft background and construction.
- c) Find principles dimension for hovercraft that will design and make comparison with other hovercraft.
- d) To find drag component and lift force that stride to hovercraft and than make assumption for thrust. With this assumption, the suitable propeller and power plant can be determined.
- e) To complete the drawing of small hovercraft design.
- f) To find the best material to be used and estimate the cost for model construction.

g) To recognize all hovercraft applications and limitations and also to define a small hovercraft in their classification.

1.5 Problem identified

The problems which leads to this project are:

- a) There's no such model or teaching equipment in KUTKM that can be used for education, research or stimulate the air cushion vehicle concept.
- b) The functional scaled model is needed for performing and implementing many mechanical fields from fluid dynamic, design, structural to automotive.
- c) An initial model for future research and development to improve efficiency, expend the usage and further innovations for air cushion vehicles.

1.6 Design Requirements

For designing this hovercraft model, there's some requirement to fulfill the objective and bachelor level of study, the requirements in design of small hovercraft are:

- a) The model must be well designed and powered.
- b) Implicate the mechanical principle like aerodynamic, airfoil and fluid dynamic.
- c) The model must perform basic function of hovercraft and able to travel on various kind of terrain including water.
- d) This model must able to produce enough air cushion to hover its body and also can lift some loads.

- e) The hovercraft must able to produce enough thrust to move along the ground by itself and with some loads.
- Preferably mobile type of model that will carry its own power supply without external source.

1.7 Expected Result

Among the project activities, there must some expected result. The primary goal is to prepare a full drawing of preliminary design of small hovercraft. The designed hovercraft must accordance from previous hovercraft. The principal dimension of hovercraft is depending on their ability to support the determined payloads. This hovercraft model is for study and research purposes while still perform its basic functions.

Thus, it must have all the required characteristics of the hovercraft even this is a small scale model. This amphibious hovercraft will be fabricated with polystyrene or Styrofoam and coated with fiberglass layer to produce rigid and tough body and used single or dual power plant (engines or electric motors) for thrust and lift systems. Because of their consumption for this craft to lift some loads, high-speed engine or motor is applied to the lift power.

These lift power should be controllable to get sufficient pressure in the cushion and suited with the applied loads. Skirt materials must flexible and has sufficient stiffness, hence it can operation off-the-road, on water surface or even on the rough terrain.

CHAPTER 2

LITERATURE STUDY

2.1 What is Hovercraft?

A hovercraft is a vehicle that is hovering just above the ground, or over snow or water, by a 'cushion of air' [Razak, 2000]. To understand the principle of the air cushion effect, assuming of dropping a cork tablemat on to the tablecloth, so that it falls completely silent. If the mat was dropped perfectly horizontal, it is brought to a stop quite gently by the air trapped underneath it. The air escapes, of course, but it makes a temporary 'cushion'.

In a hovercraft a similar cushion of air is maintained by pumping in a steady supply air, to keep pace with the linkage round the sides. There is always some leakage because the craft has to be free to move, but the designers use various methods to keep leakage as small as possible so that only minimum power is required to keep up the air supply [James M. Pruett, 1973].

The various ways of creating the air cushion and reducing leakage, are described in later chapters, and it shown in very simple example below (Fig 2.1).

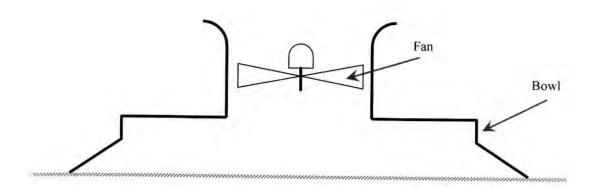


Figure 2.1 Simple example of hovercraft

This is purely imaginary hovercraft to show the idea in its simples form. It is rather like a bowl, upside down, fitted with an engine and a propeller which sucks air in through the hole at the top and forces it into the hollow part beneath.

When the fan is rotated, the air pressure inside the 'bowl' begins to increase quite quickly and pushes against the sides of the bowl (Fig 2.2), just as it pushes against the skin of a balloon when you blow it up. The difference is that this bowl is not elastic, and instead of forcing the rubber to stretch, the air pressure forces the bowl up off the ground.

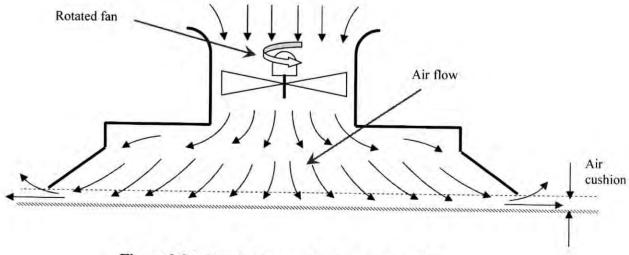


Figure 2.2 Simple hovercraft air cushion supply.

As soon as the bowl rises the air has a way of escape all round the bottom edge, but as long as the fan keeps on pumping air in fast enough to keep pace in the rate of leakage of the bowl will remain supported and the faster the air is pumped in the higher the bowl will rise.

This Surface Effect Ship (SES) is one of the assorted types of Ground Effect Machine (GEM). A hovercraft has been a public transportation in Europe since the 1960's [Malcolm W. Cagle, 1970]. Basically a model hovercraft is designed for research and study purpose from its principle operations to development and improvement of the current model. GEMs are air cushion vehicles. The load of this vehicle is supported by a volume air under the vehicle. All movement and motion of this vehicle is generated by either aerostatic or aerodynamic force or both.

A well designed hovercraft is superior to a boat over water because it has less drag and requires less horsepower to push it. This results in higher speeds and better fuel consumption. The hovercraft gets about twice the fuel mileage of a boat with similar size or capacity [Liang Yun & Alan Bliault, 2000]. Rising fuel prices and shortage of fuel will make the hovercraft more desirable in the future. It also gives a smoother ride than a boat because it maneuvers above the water, not on it. It travels over water with no concern for depth or hidden obstacles. It will go against the current of a river at the same ground speed as going along the current. The hovercraft also works very well in rapids or water where standing waves up to a meter high have been encountered for a medium scaled hovercraft [Malcolm W. Cagle, 1970].

The special qualities of hovercraft shall be discussed in later chapters and for the moment they may be enough to hint at some of the reasons why people have thought that it would be worth going to a great deal of trouble and spending a great deal of money to make practical hovercraft.