BORANG PENGESAHAN STATUS TESIS

JUDUL: SMART ROUTER CONFIGURATION SYSTEM (TELNET) SESI PENGAJIAN: <u>SEMESTER 1 (2006/2007)</u> Saya <u>MOHD FIRDAUS BIN MD YASIN</u>

mengaku membenarkan tesis (PSM) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hakmilik Kolej Universiti Teknikal Kebangsaan Malaysia.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS) Alamat tetap: No. 92 Jalan SG 9/27, Taman Seri Gombak, 68100 Batu Caves, Selangor. Tarikh : 30 November 2006

6 (TANDATA GAN PENYELIA)

En. Nazrulazhar Bahaman

Tarikh : 30 November 2006

raf

0000038486 Bluetooth remote controller for virtual devices / Mohd Firdaus Md Yasin.

BLUETOOTH REMOTE CONTROLLER FOR VIRTUAL DEVICES

MOHD FIRDAUS BIN MD YASIN

This report is submitted in partial fulfilment of the requirements for the Bachelor of Computer Science (Computer Network)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA 2006

DECLARATION

I hereby declare that this project report entitled BLUETOOTH REMOTE CONTROLLER FOR VIRUAL DEVICES

is written by me and is my own effort and that no part has been plagiarized without citations.

STUDENT

ગ - 11 - ૦૯ Date:____

(MOHD FIRDAUS BIN MD YASIN)

SUPERVISOR

2 Date: 21 - 11 - 06.

(EN. NAZRULAZHAR BAHAMAN)

DEDICATION

Specially dedicated to my beloved family members who have encouraged, guided and inspired me throughout my journey of education my friends, and my colleagues.

ACKNOWLEDGEMENTS

In the name of Allah the Almighty and most Merciful.

First and foremost, I would like to thank Mr. Nazrulazhar bin Bahaman, my faculty supervisor who was very kind enough to give me the opportunity to work on such an interesting projects. He has always been there to point the way, provide insight, and take part on all aspects to make sure my project is successful during PSM 1 and PSM II. His intellectual originality, astute suggestions, and fresh approach have been invaluable for this project. I also want to thank the staff at FTMK for their continued support in finishing my report.

Thanks to my parents and family, who have supported me throughout my life and encouraged all my choices. I also like to thank to all my course mates for giving me endless cooperation and help me with the excellent ideas.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Bluetooth Remote Controller for Virtual Devices (BRCVD) is a Bluetooth application used to control virtual devices. This application involved two main devices which are the Handphone implemented with JSR 82 API for Bluetooth as the remote control and the Desktop as a platform for the virtual devices. The virtual devices has a function ON and OFF and has been develop inside a prototype system using Java programming while a GUI application using Java J2ME application installed inside the Handphone. The GUI application inside the Handphone has a function to turn the virtual devices at the prototype system ON or OFF. Once the application inside the Handphone choose to turn the virtual devices ON, Bluetooth signal sent to the prototype system and turn the virtual devices ON.

ABSTRAK

Bluetooth Remote Controller for Virtual Devices (BRCVD) adalah satu aplikasi Bluetooth yang digunakan untuk mengawal perkakasan maya (bukan perkakasan sebenar). Aplikasi ini melibatkan dua perkakasan utama iaitu Telefon Bimbit (Handphone) yang mempunyai JSR 82 aplikasi untuk Bluetooth sebagai alat kawalan dan Komputer sebagai tapak untuk membangunkan perkakasan maya.. Perkakasan maya tersebut mempunyai fungsi BUKA dan TUTUP dan telah dibangunkan di dalam satu replika sistem. Replika sistem tersebut telah dibangunkan menggunakan pengaturaan Java manakala aplikasi Grafik Antaramuka Pengguna di dalam Telefon Bimbit menggunakan Java J2ME (Java untuk edisi Telefon Bibmit). Aplikasi Grafik Antaramuka Pengguna di dalam telefon bimbit mempunyai fungsi untuk mengawal perkakasan maya di dalam replika sistem untuk BUKA dan TUTUP. Apabila applikasi di dalam Telefon Bimbit itu memilih untuk BUKA perkakasan maya, satu isyarat Bluetooth akan dihantar dari Telefon Bimbit tersebut ke replika sistem and menukar perkakasan maya tersebut supaya BUKA dan begitulah sebalik nya.

TABLE OF CONTENT

CHAPTER

SUBJECT

PAGE

DECLARATION	
DEDICATION	i
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENT	v
LIST OF FIGURE	x
LIST OF TABLE	xi
LIST OF ABBREVIATION	xiii
LIST OF ATTACHMENTS	xiv

CHAPTER I

INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement(S)	2
1.3	Objectives	2
1.4	Scopes	3
1.5	Project Significance	4
1.6	Conclusion	4

TABLE OF CONTENT

CHAPTER

SUBJECT

PAGE

DECLARATION	
DEDICATION	i
ACKNOWLEDGEMENTS	ü
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENT	v
LIST OF FIGURE	x
LIST OF TABLE	xi
LIST OF ABBREVIATION	xiii
LIST OF ATTACHMENTS	xiv

CHAPTER I

INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement(S)	2
1.3	Objectives	2
1.4	Scopes	3
1.5	Project Significance	4
1.6	Conclusion	4

CHAPTER II	LIT	LITERATURE REVIEW AND PROJECT	
	ME	THODOLOGY	
	2.1	Introduction	
	2.2	Fact and Finding	
		2.2.1 Bluetooth Operation	
		2.2.2 Bluetooth Products	
		2.2.3 Using Java API for Bluetooth	
		Wireless Technology	
		2.2.4 Bluetooth Remote Controller	
	2.3	Project Methodology	
	2.4	Project Requirements	
		2.4.1 Software Requirement	
		2.4.2 Hardware Requirement	
	2.5	Project Schedule and Milestones	
	2.6	Conclusion	

CHAPTER III ANALYSIS

3.1	Intro	duction	16
3.2	Prob	lem Analysis	17
	3.2.1	Background current system scenario	17
	3.2.2	The Data Flow Diagram or Activity	
		Diagram Showing How the Current	
		System Run	18
	3.2.3	Diagram to Visualize the System Flow	19
	3.2.4	Problem Statements	20
3.3	Requi	irement Analysis	22
	3.3.1	Functional Requirements	22
	3.3.2	Flow Chart and Data Flow Diagram for	
		The Becoming Technology That Has	
		Been Developed	28

vi

3.4	Software Requirements	30
3.5	Hardware Requirements	31
3.6	Conclusion	32

CHAPTER IV DESIGN

4.1	Introduction	33
4.2	Network Architecture	34
4.3	Logical Design	35
4.4	Physical Design	36
4.5	Conceptual Design	37
4.6	Security Requirements	39
4.7	Detail Design	40
	4.7.1 Software Specifications	40
	4.7.2 Security Specification	44
4.8	Conclusion	44

CHAPTER V

IMPLEMENTATION

5.1	Introduction	45
5.2	Software Configuration Management	46
	5.2.1 Configuration Environment Setu	p 47
	5.2.2 Version Control Procedure	48
	5.2.2.1 BRCVD Version 1	49
	5.2.2.2 BRCVD Version 2	49
	5.2.2.3 BRCVD Version 3	50
5.3	Hardware Configuration Management	52
	5.3.1 Hardware Setup	52
5.4	Development Status	54
5.5	Conclusion	59

CHAPTER VI

TESTING

6.1 Introduction

vii

6.2	Test Plan	61
	6.2.1 Test Organization	61
	6.2.2. Test Environments	63
	6.2.3 Test Schedule	64
6.3	Test Strategy	66
	6.3.1 White Box and Black Box Overview	66
	6.3.2 White Box Testing	66
	6.3.3 Black Box Testing	67
	6.3.4 Classes of Test	67
6.4	Test Design	68
	6.4.1 Test Description	69
6.5	Test Result and Analysis	71
	6.5.1 Test Case Result	72
6.6	Conclusion	82

CHAPTER VII

PROJECT CONCLUSION

7.1

Obse	rvation on Weaknesses And	
Stren	gths	83
7.1.1	Strengths	84
	7.1.1.1 GUI Application Using	
	Bluetooth Technology	84
	7.1.1.2 Connecting Devices Without	
	The Need of Cable	84
	7.1.1.3 Industry Wireless	
	Communication Standard	85
	7.1.1.4 Manage Control Virtual	
	Devices Through	
	Bluetooth Connection	85
	7.1.1.5 Implements Bluetooth	
	Security Connection	85
7.1.2	Weaknesses	86
	7.1.2.1 Not able to apply the	
	Application in real	

7.1.2.2 No Refresh Button

	Available for Current	
	Status of Virtual Devices	86
7.2	Propositions for Improvements	87
7.3	Conclusion	88

PROJECT CONCLUSION

REFERENCES

ATTACHMENTS

86

ix

LIST OF FIGURES

FIGURES	TITLE	PAGE
2.1	Waterfall Model of project methodology	10
3.1	Flow Chart for current system	17
3.2	Sample of Bluetooth connection with different devices	18
3.3	Basic diagram for the Bluetooth Remote Controller for	
	Virtual Devices.	27
3.4	Flow Chart for Bluetooth Remote Controller	28
3.5	Data Flow Diagram (Context Diagram) for Bluetooth	
	Remote Controller	29
4.1	A Basic Network Architecture	33
4.2	Bluetooth Remote Controller for Virtual Devices logical	
	design diagram	34
4.3	Physical Design for Bluetooth Remote Controller for	
	Virtual Devices	35
4.4	Flow Diagram	36
4.5	DFD Level 0	37
4.6	Diagram for Bluetooth Remote Controller for	
	Virtual Devices	37
4.7	The exact application will work	40
4.8	The Software used for control the virtual devices	41
4.9	The Prototype System for Virtual Devices	42

LIST OF TABLES

TABLE	TITLE	PAGE	
3.1	Bluetooth class for Power Consumption	21	
3.2	Software Requirements	29	
3.3	Hardware Requirements	30	
4.1	List of Security Requirements	38	
5.1	Bluetooth Remote Controllers for Virtual Devices (I	BRCVD)	
	Form	51	
5.2	List of Hardware Specification, Configuration and		
	Functionalities	53	
5.3	Development status	54	
6.1	Test Environment	70	
6.2	Test Schedule	71	
6.3	Classes of Test	74	
6.4	Test Description	75	
6.5(i)	Module 1 Test Case Result	78	
6.5(ii)	Module 2 Test Case Result	79	
6.5(iii)	Module 3 Test Case Result	80	
6.5(iv)	Module 4 Test Case Result	81	
6.5(v)	Module 5 Test Case Result	82	
6.5(vi)	Module 6 Test Case Result	84	

6.5(vii)	Module 7 Test Case Result	85
6.5(viii)	Module 8 Test Case Result	86
6.5(ix)	Module 9 Test Case Result	87
6.5(x)	Module 10 Test Case Result	88

xii

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATION

Abbreviation	Word/Description
BRCVD	Bluetooth Remote Controller for Virtual Devices
DFD	Data Flow Diagram
PDA	Pocket Desktop Assistance
LED	Light-Emitting Diode
WiFi	Wireless Fidelity
GUI	Guided User Interface
VB	Visual Basic
USB	Universal Serial Bus
PC	Personal Computer
API	Application Programming Interface
PAN	Personal Area Network
SDK	Software Development Kit

LIST OF ATTACHMENTS

TITLE

ATTACHMENTS

PAGE

- 1.1 Gantt Chart
- 1.2 BRCVD Version 1
- 1.3 BRCVD Version 2
- 1.4 BRCBD Version 3

CHAPTER 1

INTRODUCTION

1.1 Project Background

For this project, the Handphone provided with Bluetooth technology connected with a virtual devices inside a Desktop (system using Java programming as the platform). Using Bluetooth technology, the handphone connected with the virtual devices and control the devices either to switch it on and off. The virtual LED (representing the status of the virtual devices) inside the system representing the status of the devices. If the color is red, the devices are defined to be in off condition and if the colors turn to green, it means that the devices are being switched on through the handphone.

1.2 Problem Statements

- i. There are a lot of devices needs a cable as a connecting medium. While having the Bluetooth technology, users can save the usage of the cable.
- Nowadays, each device usually comes out with specific remote controller. By implementing this technology, it will become more integrated by controlling devices using Handphone (single remote controller).
- Nowadays, some devices have to use electrical power to make it work properly. By implement this technology; user can reduce power consumption because it does not require an electrical power to work.

1.3 Objectives

- i. Connecting devices without the need for cables. By implementing this technology, user can communicate each other using Bluetooth technology in range about 10meters.
- ii. Becoming more integrated within some devices. Nowadays, there are a lot of Bluetooth products that can be use by everyone. It can be either connected each other or within other products.

- iii. Industry wireless communications standard. Nowadays, Bluetooth product can be use for many purposes either at home, office, in motion or at play.
- iv. Becoming more affordable for everyone. There are a lot of Bluetooth products available at the market such as Handphone, Handheld PDA and Bluetooth Headphone. This product can be use by everyone especially Handphone.

1.4 Scopes

- This technology will used a Java J2ME programming as the GUI at the Bluetooth Handphone and using Java programming for the prototype system for virtual devices.
- ii. There is a Bluetooth security when two devices connected each other. The security is made to authorize the Bluetooth connection between two devices connected each other.
- This technology can be use at anytime as long as two Bluetooth devices are close enough. (approximate 10 meters)
- This technology may control virtual devices in a Java Programming system using Handphone in range or Bluetooth technology.

1.5 Project Significance

This technology is build for user's convenience. When using this technology, users can control devices (prototype) through the Handphone. It makes work become easier and faster. Through the Handphone which had the Bluetooth technology, users can control either to switch the devices on or off.

1.6 Conclusion

This will be the first phase to implement the technology and it is just a target to make sure this project work smoothly. An early planning is needed to make sure every problem can be solves. Next activity will be the literature review and project methodology which means that the selected approach for methodology has to be chosen.

C Universiti Teknikal Malaysia Melaka

CHAPTER 11

LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

This chapter explains about the literature review and project methodology for the project. Work will be more on finding the fact, journal or article that connected with the project. The fact should have the author to support it. Besides, project methodology is also important as a guideline of activities for developers to follow and obey. There are a lot of methodology exists and depends on developers to choose the suitable one. Usually, it will be choosing according to project or system description.

2.2 Fact and Finding

In this section, developers find any fact that might be helping in developing the project. The facts can be an article, journal, book or paper review. An internet also can be used as a search engine for finding the facts according to the project but the sources from the internet usually not permanently kept and always change from time-to-time. It made the references from the internet not reliable for a long period of time.

2.2.1 Bluetooth Operation

Bluetooth networking transmits data via low-power radio waves. It communicates on a frequency of 2.45 gigahertz (actually between 2.402 GHz and 2.480 GHz, to be exact). This frequency band has been set aside by international agreement for the use of industrial, scientific and medical devices (ISM). Bluetooth is intended to get around the problems that come with infrared systems. The older Bluetooth 1.0 standard has a maximum transfer speed of 1 megabit per second (Mbps), while Bluetooth 2.0 can manage up to 3 Mbps. Bluetooth 2.0 is backward compatible with 1.0 devices. A number of devices that may already used take advantage of this same radio-frequency band. Baby monitors, garage-door openers and the newest generation of cordless phones all make use of frequencies in the ISM band. Making sure that Bluetooth and these other devices don't interfere with one another has been a crucial part of the design process.

One of the ways Bluetooth devices avoid interfering with other systems is by sending out very weak signals of about 1 milliwatt. By comparison, the most powerful cell phones can transmit a signal of 3 watts. The low power limits the range of a