MINIATURIZED WAVEGUIDE SLOT ANTENNA

MOHD NASRUDDIN BIN ZAINUDIN

This report is submitted in partial fulfillment of the requirement for the Bachelor Degree of Electronic Engineering (Telecommunication Electronic) With Honours

> Faculty of Electronic and Computer Engineering UniversitiTeknikal Malaysia Melaka

> > June 2012

C Universiti Teknikal Malaysia Melaka

FAKULTI KEJUR	IVERSTI TEKNIKAL MALAYSIA MELAKA Ruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
TajukProjek : MINIAT	URIZED WAVEGUIDE SLOT ANTENNA
SesiPengajian [:] 1 1	/ 1 2
Saya <u>MOHD NASRUDDIN BIN ZAI</u> mengakumembenarkanLaporanProje syaratkegunaansepertiberikut:	<u>NUDIN</u> kSarjanaMudainidisimpan di Perpustakaandengansyarat-
1. LaporanadalahhakmilikUniversi	tiTeknikal Malaysia Melaka.
2. Perpustakaandibenarkanmembua	itsalinanuntuktujuanpengajiansahaja.
 J. Ferpustakaandroenarkannemoua tinggi. 4. Silatandakan (√): 	usannamaporanninsevagarvananpertukaranantaranistitusipengajian
SULIT*	*(Mengandungimaklumat yang berdarjahkeselamatanataukepentingan Malaysia seperti yang termaktubdi dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungimaklumatterhad yang telahditentukanolehorganisasi/badan di manapenyelidikandijalankan)
TIDAK TERHAD	
	Disahkanoleh:
(TANDATANGAN PENULIS	
Tarikh:	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	: MOHD NASRUDDIN BIN ZAINUDIN
Date	: 15 th JUNE 2012

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honours."

Signature	:
Name	: PROF. MADYA TAN KIM SEE
Date	: 15 th JUNE 2012

Dedicated to my beloved family and a very special person

ACKNOWLEDGEMENT

First, I am highly thankful and indebted to Allah SubhanahuWata'ala for providing me the peace of mind, ability and will to complete this work.

Peace and Rahmah be upon my father,Mr.Zainudin bin Mat Kiramwho had inspired me throughout my life to strive for excellence. May Allah bestow upon him with Al Firdaus. I am also most grateful to my mother, Mrs.RosliyabintiShukri, my grandmotherMrs.Hasnahbinti Mon, and my girlfriend,Mrs.Hoshiyama Reynafor their spiritual support and blessings. I am also thankful to all my brothers, sisters, sisterin-law, brother-in-law and foster sister; namely, Nadiah, Nasrullah, SaidatulSyuhadah, Nadirah, NasrunFadhli, MohdHirzan and OchiaiRie.

I am very grateful to PM. Tan Kim See, my project supervisor who has inspired and guided me for a year enabling me to complete my project and towards my Bachelor Degree. His invaluable guidance and support provided me the confidence and belief to complete the project as well as this thesis. Without his support and patience, it would have made my task harder to complete mystudies.

I would like to express my gratitude to the Faculty of Electronic and Computer Engineering (FKEKK) for giving me the opportunity to undertake the project, which is a requirement to fulfilling the bachelor degree where I had gained great experience and knowledge.

Last but not least, I would like to thank everyone who has made this project possible especially my friends; Jason Danial, Othman AbdullatifJussab, TehCheeKang, my lecturer,Mr. Mohammad Zoinol, Final Year Project lab techniciansand Microwave Lab technicians.

ABSTRACT

This project presents the design and analysis of a miniaturizedwaveguide slot antenna with a center frequency of 2.4GHz and a Bandwidth of 258MHz. The miniaturization of waveguide slot antenna takes into the considerations on the design specifications and performances available in the market. The research compares simulation results and lab test results. The initial antenna design was simulated using CST Microwave Studio software. The fabrication of the miniaturized waveguide slot antenna was realized using the FR4 dielectric substance with a feeder probe as antenna input. The miniaturized waveguide slot antenna provides a bandwidth of 228 MHz with a return loss of - 27.953 dB and gain of 3.528 dB operating at 2.4GHz.With this research, smaller waveguide slot antenna can be used in applications stated in IEEE 802.11 specifications for wireless application in the future.

ABSTRAK

Projek ini membentangkan tentang pengurangan saiz ruang antena dengan gelombang dorongan yang beroperasi pada frekuensi 2.4GHz dan membekalkan jalur lebar seluas 258MHz. Ruang antena dengan gelombang dorongan mengambil kira specifikasi serta prestasi daripada reka bentuk yang sama yang terdapat di pasaran. Thesis ini membincangkan dan membuat perbandingan diantara keputusan yang diperoleh dari perisian simulasi dan ujian makmal. Perisian CST Microwave Studio digunakan untuk mereka bentuk dan ujian simulasi. Kemudian, ruang antenna dengan gelombang dorongan ini difabrikasi dengan menggunakan bahan FR-4 dan teknik probe digunakan sebagai punca bekal kuasa. Antena ini dapat membekalkan jalur lebar seluas 258MHz, kembalian kerugian bernilai – 27.953 dB dangandaan bernilai 3.528 dB apabila ia beroperasi pada 2.40GHz. Dengan kajian projek inidiharapkan ruang antenna dengan golombang dorongan dapat digunakan sebagai aplikasi sepertimana pada specifikasi dari IEEE 802.11 untuk aplikasi wayarles di masa akan datang.

CONTENTS

CHAPTER	TITLE	PAGES
	PROJECT TITLE	i
	STATUS CONFIRMATION FORM	ii
	DECLARATION	iii
	DEDICATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	CONTENTS	ix
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xvi
	SYMBOLS	xvii
	LIST OF APPENDIX	xviii
1	INTRODUCTION	

1.0	Introduction	2
1.1	Project Objective	2
1.2	Project Scope	3
1.3	Methodology	3
1.4	Thesis Structure	4

LITERATURE REVIEW

2

2.0	Commercial Development of Microstrip	
	Patch Antenna	7
2.1	Advantages and Limitation	
	of Microstrip Patch Antenna	10
2.2	Method to Design Microstrip Antenna	11
2.3	Topology of Rectangular, Probe-fed, U-slot	
	Microstrip Patch antenna on a Single Layer,	
	Grounded Substrate	12
2.4	Substrate Selection	14
	2.4.1 Consideration in Substrate Selection	14
	2.4.2 Theoretical Effects of Substrate Permittivit	у
	and thickness on Performance of "Classical"	
	Microstrip Patch Antenna	15
2.5	Review of Miniaturization Technique	16
2.6	Proposed Tuning Technique	18
	2.6.1 Characterizing Bandwidth on	
	the Smith Chart	19
	2.6.2 Investigating the Relationship between the	
	U-Slot Geometry and the Impedance	
	Characteristics of the Patch	20
	2.6.2.1 Effect of Probe Location (y_p)	20
	2.6.2.2 Effect of Probe Radius (r_{inner})	20
	2.6.2.3 Effect of Substrate Thickness (h)	21
	2.6.2.4 Effect of Slot Width (W)	22
	2.6.2.5 Effect of $\frac{G}{H}$ ratio	22
2.7	Tuning Technique for Broad-band U-Slot Design	23
2.8	Glass Epoxy (FR-4)	23

C Universiti Teknikal Malaysia Melaka

METHODOLOGY

3

3.1	Work Flowchart	25
3.2	Waveguide Slot Antenna Design Specifications	26
	3.2.1 Design Procedure of Waveguide	
	Slot Antenna	27
	3.3.2 Purpose Design Specification	29
3.3	Simulation Process of Waveguide Slot Antenna via	ı
	CST Microwave Studio software	29
	3.3.1 Simulation Procedure	31
3.4	Parametric Study of Waveguide Slot Antenna	33
3.5	Miniaturized and Optimization Waveguide Slot	
	Antenna Specifications	34
3.6	Waveguide Slot Antenna Fabrication Process	34

4 **RESULTS AND ANALYSIS**

4.0	Parametric Studies Result	36
	4.0.1 Vertical slot size effect	36
	4.0.2 Horizontal Slot Effect	39
	4.0.3 Air Thickness Effect	41
	4.0.4 Substrate Thickness Effect	42
	4.0.5 Inner Core Size Effect	43
	4.0.6 Patch Size Effect	44
4.1	Simulation Result	45
4.3	Lab Test Result	49
4.4	Comparison between Lab Test and	
	Simulation Result	51

DISCUSSION AND CONCLUSION

5

5.1	Conclusion	55
5.2	Recommendation	55
REF	ERENCES	56
APP	ENDICES	59

LIST OF TABLES

TABLE TITLE

PAGE

2.4.1.1	Examples of Substrates and Representative Characteristics	15
3.2.2.1	Design Specification of waveguide slot antenna	29
3.5.1	Miniaturized Waveguide Slot Antenna Specification	34
4.3.1	Simulation versus Lab Test Result	52

xiii

LIST OF FIGURES

FIGURE TITLE

PAGE

2.0.1	"Classical" Rectangular Microstrip Patch Antenna	7
2.0.2	Common Feeding Methods for Microstrip Patch Antennas	8
2.0.3	Common Patch Configurations Used to Achieve	
	Increased Bandwidth	9
2.2.1	Geometries of shorted rectangular patch antenna	12
2.3.1	Topology of a Rectangular, Probe-Fed, U-Slot Microstrip Patch	
	Antenna	13
2.5.1	Inverted-F configuration	17
2.5.2	Circular Patch with a Shorting	17
2.5.3	Utilizing photonic band-gap material for antenna height reduction	18
2.6.1.1	Generic Impedance Loci of U-Slot Microstrip Antenna.	19
2.6.2.1.1	Effect of Probe Location on the Impedance Behaviour	
	of the U- slot	20
2.6.2.2.1	Effect of Probe Radius on the Impedance Behaviour of the U-Slot	21
2.6.2.3.1	Effect of Substrate Thickness on the Impedance Behaviour of the	
	U-Slot	21
2.6.2.4.1	Effect of Slot Width on the Impedance Behaviour of the U-Slot	22
2.6.2.5.1	Effect of $\frac{G}{H}$ Ratio on the Impedance Behavior of the U-Slot	22
3.1.1	Project Flow Chart	25
3.3.1.1	CST Microwave Studio	31
3.3.1.2	CST Microwave Studio Interfaces	31
3.3.1.3	Simulation Design of Waveguide Slot Antenna	33
4.0.1.1	Inner Line of Vertical Slot Effect	36
4.0.1.2	Inner Line of Left Vertical Slot Effect	37
4.0.1.3	Inner Line of Right Vertical Slot Effect	37

4.0.1.4	Outer Line of Vertical Slot Effect	38
4.0.2.1	Upper Line of Horizontal Slot Effect	39
4.0.2.2	Lower Line of Horizontal Slot Effect	40
4.0.3.1	Air Gap Thickness Effect	41
4.0.4.1	Substrate Thickness Effect	42
4.0.5.1	Inner Core Size	43
4.0.6.1	Patch Size Effect	44
4.1.1	Simulation Response Graph	45
4.1.2	Simulation Response Graph with Return Loss	46
4.1.3	Simulation Response Graph with Bandwidth	46
4.1.4	Farfield 3D Graph	47
4.1.5	Radiation Pattern Graph	48
4.2.1	Lab Test Result	49
4.2.2	Lab Test Result with Return Loss	50
4.2.3	Lab Test Result with Bandwidth	50
4.2.4	Lab Test Polarization Graph	51
4.3.2	Simulation versus Lab Test Response Graph	52

LIST OF ABBREVIATIONS

\mathbf{BW}	-	Bandwidth
W	-	Watt
FR-4	-	Flame Retardant Type 4
mm	-	millimeter
PCB	-	Printed Circuit Board
IEEE	-	Institution of Electrical and Electronic Engineer
MHz	-	Mega Hertz
GHz	-	Giga Hertz
FYP	-	Final Year Project
VSWR	-	Voltage Standing wave Ration
HF	-	High Frequency
R&D	-	Research and development
CST MWS	-	CST MICROWAVE STUDIO®
3D	-	3 Dimension
CAD	-	Computer-aided Design
FNBW	-	Full Null Bandwidth
HNBW	-	Half Null Beamwidth

SYMBOLS

L ₂	-	Length 2
W_2	-	Width 2
L_1	-	Length 1
W_1	-	Width 1
\mathbf{f}_{L}	-	Lower Frequency
\mathbf{f}_{H}	-	Upper Frequency
%	-	Percentage
Уp	-	Probe Location
r _{inner}	-	Inner Radius
μ_0	-	Permeability of air space
ε ₀	-	Permittivity of air space
ϵ_{reff}	-	Effective dielectric constant
ε _r	-	Dielectric Constant
dB	-	Decibel
h	-	Substrate Thickness
λ_0	-	Air space Wavelength
f _{min}	-	Minimum Frequency
f _{max}	-	Maximum Frequency
W	-	Width
e	-	Slot width
\mathbf{S}_{11}	-	Return Loss
Ω	-	Ohm
λ	-	Wavelength
π	-	Pi

LIST OF APPENDIX

APPENDIX

PAGES

A.	Waveguide Slot Antenna Design (Front View)	59
B.	Waveguide Slot Antenna Design (Side View)	59

CHAPTER 1

INTRODUCTION

This chapter presents an introduction of waveguide slot antenna, background, problem statement, objectives and scope of the research.

C Universiti Teknikal Malaysia Melaka

1.0 Introduction:

Current advancement in communication technology, consumer demands, and growth in the wireless communication market demonstrate the need for smaller, power efficient and more reliable integrated wireless systems. Antennas which come in many kinds such as slot antenna are considered to be the largest components of integrated wireless system; hereby, antenna miniaturization is a challenge and an important task for engineers, designers in order to achieve an optimal design for integrated wireless system. Slot antenna which are used widely in spacecraft, missile, aircraft, satellites, cars and other mobile application are better than other type of antennas since it is cheap and easy for mounting and fabrication, suited for integration, light and mechanically robust, and provides low cross-polarization.

This project is carried out in order to present a miniaturized waveguide slot antenna operating at 2.4 GHz by using an air gap technique. It is hoped that this project will bring upon interest among people in the communication world in designing a good miniaturized waveguide slot antenna.

1.1 Project Objectives

The main objective of this project is to study and analyse the design of a miniaturized waveguide slot antenna using the technique of providing an air gap in order to provide the same properties and work operation of waveguide slot antenna but comes in smaller sizes.

1.2 Project Scope

The main areas being identified that need to be worked out are:

- 1. Conduct literature review about waveguide slot antenna and analyzed the list of parameters needed for the antenna design
- Design and simulate the waveguide slot antenna and conduct several tests in order to get measurements for certain parameters and provide a simulation data record
- 3. Fabricate a waveguide slot antenna
- Test and troubleshoot a waveguide slot antenna and providing experimental data record.

Other scopes of work include:

- 1. Study on theoretical engineering principles related to the proposed project
- 2. Design, simulate and fabricate the required antenna for the project
- 3. Maintain good log book records
- 4. Prepare the necessary documents
- 5. Present the completed project in the seminar

Final report and submission

1.3 Methodology

In order to complete this project, the following tasks must be executed and completed.

- 1. Initiate project plan and progress chart by using Gantt chart
- 2. Study about types of antenna, characteristics, designing, and parameter for testing as well as designing technique.
- 3. Search for suitable materials such as books, journals, conferences report, thesis writing and electronic media as references.
- 4. Do a simulation for several slot designing and test for gain, bandwidth, return loss and justify the radiation pattern.

- 5. Components and parts identification/specification/procurement.
- 6. Fabricate the chosen design and run a real time test for efficiency, bandwidth, path losses, and radiation pattern.
- 7. Presentation on outcome of the project.
- 8. Preparation and presentation of technical report.

1.4 Thesis Structure

This thesis comprises of five chapters. The following is the outline of Miniaturized Waveguide Slot Antenna – chapter by chapter.

Chapter 1: This chapter discusses on the brief overview about this project such as introduction, objective, and scope of study, problem statement and methodology.

Chapter 2: This chapter consists of literature review of this project which covers commercial development of microstrip patch antenna, its advantages, limitation, method to design, topology of rectangular, probe-fed, U-slot microstrip patch antenna on a single-layer, grounded substrate, substrate selection, review of antenna miniaturization technique, proposing tuning technique and finally, tuning technique for U-slot patch design.

Chapter 3: This chapter elaborates on the lists of procedure in designing a waveguide slot antenna starting with the work flowchart, antenna design specification, and simulation process by using CST Microwave Studio software, parametric studies of antenna process, miniaturization and optimization specification, and fabrication process.

Chapter 4: This chapter retrieves and discusses on the results obtained in simulation, parametric studies, and lab test result of miniaturized waveguide slot

antenna and finally compares the differences between results obtained from simulation and lab test.

Chapter 5: This chapter concludes this thesis and recommends future development of this research.

CHAPTER 2

LITERATURE REVIEW

This chapter discusses literature review of this project which consist of the commercial development of microstrip patch antenna, its advantages, limitation, method to design, topology of rectangular, probe-fed, U-slot microstrip patch antenna on a single-layer, grounded substrate, substrate selection, review of antenna miniaturization technique, proposing tuning technique, tuning technique for U-slot patch design, and finally about Glass Eproxy (FR-4).