

0000037723 Simulation of injection molding / Hazrati Husnin.

SIMULATION OF INJECTION MOLDING

HAZRATI BT HUSNIN

This report is submitted in partial fulfilment of the requirements for the Bachelor of Information and Communications Technology (Media Interactive)

FACULTY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA 2005

BORANG PENGESAHAN STATUS TESIS

JUDUL: SIMULATION OF INDECTION MULDING

SESI PENGAJIAN: 2004/2005

Saya HAZRATI BT HUSNIN

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Kolej Universiti Teknikal Kebangsaan Malaysia.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

SULIT	(Mengandungi maklumat yang berdarjah
	keselamatan atau kepentingan Malaysia seperti
	yang termaktub di dalam AKTA RAHSIA RASMI
	1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah
	ditentukan oleh organisasi/badan di mana
	penyelidikan dijalankan)
TIDAK TER	HAD

1

(TANDATANGAN PENULIS)

13050, BUTTERWORTH,

Tarikh : 23/11/05

Alamat tetap : NO 1, JLN PERWIRA, TMN NIRA,

marson

(TANDATANGAN PENYELIA) Zulswan Marson

Nama Penyelia Tarikh : _____3/11/05

DECLARATION

I hereby declare that this project report entitled

SIMULATION OF INJECTION MOLDING

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : HAZRATI BT HUSNIN

May 2005

SUPERVISOR: EN ZULISMAN B MAKSOM

Date: 24 May 2005

DEDICATION

To my beloved parent, family and friends

ACKNOWLEDGEMENT

In the name of Allah SWT, I thank Him, as for His bless, I was able to finish this Projek Sarjana Muda report.

Along my involvement in the process of writing this report, I was helped and support by all parties in terms of moral, spiritual and technical support. I would like to thank my PSM Supervisor, Encik Zulisman B Maksom for his patient in supervising and managing me along this period.

Not forgetting Faculty of Manufacturing Engineering, Encik Aziz, Encik Fauzi and few students of Manufacturing Engineering for their contribution in providing information and guide for this project.

Not forgetting as well to all my friends that went through this same experience during this short semester.

Wabillahi Taufik Walhidayah, Wassalamua'laikum Warahmatullahi Wabarakatuh.

Hazrati Husnin

May 2005

ABSTRACT

The use of multimedia technology to provide resources and tools for learning has emerged. One of the first activities was to convert traditional encyclopedia and reference works into a multimedia form. The original material was enhanced by the addition of good quality graphics, sound, and video. Resources based learning has been proposed as a framework for exploiting those new opportunities. A resource can be almost anything, and resources based learning does not specify how the materials are to be used. Resources can be used either to enhance or to replace traditional teaching. Simulation is used as a framework in this project. This thesis is basically to study on how simulation can enhance the learning process of engineering student towards injection molding topic. Besides, it is also to reduce constraint during student's learning process, such as equipment constraint and time constraint. It is also to introduce a new learning method for them (which have different education background). Simulation of injection molding is focused on step by step simulation to show students how does the process happens, which can be seen and cannot be seen when handling the machine in lab.

iv

ABSTRAK

Penggunaan teknologi multimedia dalam menyediakan bahan dan alat bantuan mengajar dalam pendidikan semakin meluas. Antara aktiviti pertama ialah menterjemahkan ensiklopedia tradisional dan rujukan ke dalam bentuk persembahan multimedia. Bahan asal telah ditambah nilai dengan unsur grafik, bunyi dan video yang berkualiti. Pembelajaran berasaskan bahan dan alat bantuan ini adalah kaedah yang disyorkan dalam mengeksploitasi peluang baru ini. Bahan dan alat bantuan boleh terdiri daripada pelbagai bentuk. Ia boleh digunakan samada untuk menambah nilai ataupun menggantikan kaedah pembelajaran tradisional. Di dalam projek ini, aplikasi multimedia yang tertumpu kepada simulasi digunakan sebagai bahan dan alat bantuan mengajar. Tesis ini secara keseluruhannya adalah untuk mengkaji bagaimana simulasi mampu meningkatkan proses pembelajaran pelajar Kejuruteraan Pembuatan dalam topik Penyemperitan. Selain itu, hasil akhir projek ini adalah untuk mengurangkan kekangan peralatan di makmal dan kekangan masa yang wujud ketika meraka di makmal. Ini juga adalah untuk mendedahkan para pelajar kepada kaedah pembelajaran yang baru memandangkan mereka dating daripada latar belakang pendidikan yang berbeza-beza. Simulasi ini tertumpu kepada simulasi berperingkat, di mana ia akan menerangkan langkah demi langkah yang akan dilalui oleh pelajar semasa di dalam makmal. Simulasi ini juga merangkumi proses yang dapat dilihat sewaktu mengendalikan mesin dan sebaliknya.

TABLE OF CONTENT

CHAPTER

SUBJECT

PAGE

	DEC	LARATION	i
	DEI	DICATION	ii
	ACI	KNOWLEDGEMENTS	iii
	ABS	STRACT	iv
	ABS	STRAK	v
	TAF	BLE OF CONTENTS	vi
	LIS	T OF TABLES	x
	LIS	T OF FIGURES	xi
	LIST	Γ OF ABBREVIATIONS	xiii
CHAPTER I	INT	RODUCTION	
	1.1	Overview	1
	1.2	Problem Statements	2
	1.3	Objectives	2
	1.4	Scopes	2-3
	1.5	Project Significance	3
	1.6	Conclusion	3-4
CHAPTER II	LIT	ERATURE REVIEW AND PROJECT	
	MET	FHODOLOGY	
	2.1	Introduction	5

vi

2.	.2	Fact an	nd finding	5	5-24
		2.2.1	Injectior	Molding overview	6
			2.2.1.1P	rocess in Injection Molding	7
		2.2.2	2D and 3	3D approach in education	10
			2.2.2.1	What is simulation?	10
			2.2.2.2	Benefit of simulation in education	13
			2.2.2.3	Applying simulation in project	16
		2.2.3	Multime	dia courseware in education	18
			2.2.3.1 A	dvantages of multimedia	19
		2.2.4	Human (Computer Interaction	21
			2.2.4.1	Human	21
			2.2.4.2	Human Memory	22
			2.2.4.3	Cognitive Psychology	22
			2.2.4.4	Knowledge and Mental Model	24
			2.2.4.5	Attention & Memory	24
2.	3	Project	Methodo	blogy	25
2.	4	Project	Requirer	nent	28
		2.4.1	Software	requirement	29
		2.4.2	Hardwar	e requirement	29
		2.4.3	Other rec	quirement	29
2.	5	Project	schedule	and milestone	29
2.	6	Conclu	sion		30

CHAPTER III ANALYSIS

3.1	Introd	luction	31
3.2	Proble	em Analysis	31
	3.2.1	Interview	31
	3.2.2	Questionnaire	36

vii

	3.2.3	Observa	ation	36
		3.2.3.1	Observation at laboratory	36
		3.2.3.2	Observation on current system	42
	3.2.4	Problem	n statement clarification	45
		3.2.4.1	Features in courseware	47
		3.2.4.2	Flow chart of to be system	48
3.3	Requ	irement A	nalysis	49
	3.3.1	List of s	ooftware	49
		3.3.1.1	Development software	
			requirement	50
		3.3.1.2	Runtime software requirement	52
		3.3.1.3	Other software tools	53
	3.3.2	Listof	ardware	53
		3.3.2.1	Development hardware	
			requirement	53
		3.3.2.2	User hardware requirement	54
3.4	Concl	usion		54
DES	IGN			
4.1	Introd	uction		55
4.2	Raw c	lata		55
	4.2.1	Machine	e floor plan	56
	4.2.2	Machine	e parts	57
		4.2.2.1	Clamping unit	57
		4.2.2.2	Injection unit	57
		4.2.2.3	Molding unit	58
		4.2.2.4	Control panel	58
	4.2.3	Machine	safety markings	59

CHAPTER IV

	4.2.4	Simulation	n example	60
4.3	Syster	System architecture		
4.4	Prelim	ninary design	n	62
	4.4.1	Storyboa	urd design	63
4.5	User i	nterface des	ign	63
	4.5.1	Presentat	tion of information	64
	4.5.2	Modes o	f presentation	64
		4.5.2.1	Text information	64
		4.5.2.2	Graphics and animation	68
		4.5.2.3	Sound	68
		4.5.2.4	Colors	68
		4.5.2.5	Title page –	
			splash screen (montage)	69
	4.5.3	Navigatio	on design	70
	4.5.4	Input des	ign	72
	4.5.5	Output de	esign	73
4.6	Conclu	usion		74
IMP	LEMEN	TATION		
5.1	Introdu	uction		75
5.2	Produ	ction and In	plementation	75
5.3	Produc	tion of Tex	t	75
5.4	Produc	tion of Aud	io	78
5.5	Produc	tion of Anir	nation	79
5.6	Process	s of Integrat	ion	80
5.7	Softwa	re Configur	ation Management	81
	5.7.1	Configurati	on Environment Setup	81
5.8	Implen	nentation Sta	atus	82

CHAPTER V

5.9	Conclusion	83	
TES	TING		
6.1	Introduction	84	
6.2	Test Plan	84	
	6.2.1 Test Organization	84	
	6.2.2 Test Environment	84	
	6.2.3 Test Schedule	84	
6.3	Test Strategy	84	
	6.3.1 Classes of Test	85	
6.4	Test Design	85	
	6.4.1 Test Description	85	
	6.4.2 Test Data	87	
6.5	Test Result and Analysis	90	
6.6	Conclusion	92	

х

CHAPTER VII CONCLUSION

REFERENCES BIBLIOGRAPHY APPENDICES

CHAPTER VI

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Development Hardware Requirement	53
5.1	Software and Configuration Setup	82
5.2	Implementation Status	83
6.1	Design and System Linking Test Data	88
6.2	3D modeling and Virtual Reality Test Data	89
6.3	User Acceptance Test Data	90
6.4	Test Result and Analysis Data	91

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE TITLE 2.1 Process of Injection Molding 2.2 Injection Molding process stage 1 2.3 Injection Molding process stage 2 2.4 Injection Molding process stage 3 2.5 Injection Molding process stage 4 2.6 Model of Memory Structure 2.7 Information Processing Model 2.8 Extended Information Processing Model 2.9 Model of Instructional Methodology 3.1 Flow chart of Current teaching method by lecturer 3.2 Flow chart of learning process in lab 3.3 **Control Panel** 3.4 Hopper 3.5 Melting Unit I 3.6 Melting Unit II 3.7 Injection Unit I 3.8 Injection Unit II 3.9 Molding Unit 3.10 Hydraulic I 3.11 Hydraulic II 3.12 Example of Injection Molding Simulation 3.13 Example of Injection Molding Simulation

PAGE

7

8

8

9

10

22

23

23

26

34

35

37

38

38

39

39

40

40

41

41

42

43

3.14	Example of Injection Molding Simulation	43
3.15	Example of Injection Molding Simulation	44
3.16	Flow Chart of Current Learning Process	46
3.17	Flow Chart of system to be	49
4.1	Machine Floor Plan	56
4.2	Machine Floor Plan	56
4.3	Clamping Unit	57
4.4	Injection Unit	57
4.5	Molding Unit	58
4.6	Control Panel	58
4.7	Control Panel; Illustration	59
4.8	Machine Safety Marking	59
4.9	Machine Safety Marking	59
4.10	Simulation Example	60
4.11	Basic Flow Chart	61
4.12	System Architecture	62
4.13	Vague direction	66
4.14	Functional and Cognitive direction	66
4.15	Poor Design Text Layout	67
4.16	Well Design Text Layout	67
4.17	Frame Menu	71
4.18	Navigation Design	72
5.1	Process of Text Production	76
5.2	Process of Graphic Production	78
5.3	Process of Audio Production	79
5.4	Process of Animation Production	80
5.5	Process of Integration	81

LIST OF ABBREVIATIONS

KUTKM	Kolej Unversiti Teknikal Kebangsaan Malaysia
FTMK	Faculty Information and Communication Technology
FKP	Faculty of Manufacturing Engineering
2D	Two Dimensional
3D	Three Dimensional
CD ROM	Compact Disc Read Only Memory
JPEG	Joint Photographic Experts Group
BMP	Bitmap
MPEG	Motion Pictures Experts Group
GIF	Graphics Interchange Format
GHz	Giga Hertz
MHz	Mega Hertz
RAM	Random Access Memory
PC	Personal Computer
DPI	Dots per Inch
VR	Virtual Reality

xiv

LIST OF APPENDICES

APPENDICES

TITLE

Α	Gantt Chart
В	Storyboard
С	Evaluation Form

C Universiti Teknikal Malaysia Melaka

XV

CHAPTER I

C Universiti Teknikal Malaysia Melaka

CHAPTER I

1

INTRODUCTION

1.1 Project Background

The innovation of technology that always changes through time has affected the learning process in engineering study as it requires engineering students to seek for a new learning method which is more effective and less time consuming.

In manufacturing industry nowadays, there are many manufacturing process such as drawing, blow molding, rolling, forming, injection molding and many more. All these process is the foundation in manufacturing engineering study. The weakness in understanding these processes will cause some of the student being left behind.

"Simulation of Injection Molding 3D approach" is a courseware that will explain and teach the user on the process of injection molding, how to conduct the process as well as notes on injection molding topic. This courseware will use 3D simulation in explaining the process of injection molding such as process that happen in "feed section", "compression section" and "metering section", which cannot be seen in real life during the process of injection molding. All the content for this courseware will be based on Injection Molding module used by Faculty of Manufacturing Engineering in Kolej Universiti Kebangsaan Malaysia.

1.2 Problem Statement

Injection Molding is one of manufacturing processes. Basically, lectures and lab session are the method which been use. In KUTKM, there is only one Injection Molding machine used by student for Plastic Technology subject which is Allrounder injection molding machine. The machine is expensive which cost around RM20, 000 to RM30, 000 per machine. Due to the limited equipment (machine), only five students can handle the machine at one time as there are about 30 students that going to used the machine during the lab session.

Thus, time to learn and handle the machine is too limited and it does not ensure how much have the students learn and understand the process of injection molding as well as how to handle the machine effectively. Besides, students also need to be exposed to a proper training in order for them to understand the process in injection molding instead of learning the theory during lectures.

1.3 Objectives

There are two objectives to be achieved in this project which are:

- To develop a multimedia courseware that simulates the process of Injection Molding by using simulation approach, whereby the simulation will be in 3D.
- To provide content (notes) based on Injection Molding module used by Faculty of Manufacturing Engineering in KUTKM.

1.4 Scopes

This courseware can be used by students of Faculty of Manufacturing Engineering in KUTKM that taken Plastic Technology subject or any subject that involve injection molding during lab session or in lectures. It is to emphasis on the process of injection molding explanation in 2D and 3D. The courseware will visualize the process of injection molding in details which focus on the inside of the machine when the process is running, which obviously cannot be seen during their lab session. However, this courseware is limited to the machine used by Faculty of Manufacturing Engineering which is Allrounder 370, 420 C with Injection Unit 100/250.

This courseware is a standalone courseware that will be running on normal personal computer using Window platform. English will be the communication language in this courseware. Expected output of this courseware would be in a form of CD application where it is a standalone application.

1.5 Project Significance

Study on injection molding process through theory is not enough as it required hands-on training. Thus, by using this courseware, it will help the student to have an early virtual learning that can be use at home or during lecture before entering lab.

Due to that, it will increase the student's understandability towards the injection molding process during lab session within a short time. Besides, it also to expose the engineering student to a new teaching method of this topic instead of having lectures and labs. By having this courseware at home, students will have a chance to explore the machine virtually, thus it can reduce any risk that might happen during a real life training.

1.6 Conclusion

It can be concluded that, this chapter emphasis of project determination on its scope, objective as well as the study area of this topic. Problem statement also being stated down in this chapter so that this project's significance can be determined. Thus, the

benefit of this project to the user can be measured. This chapter will be used as a guide in order to implement the research on the next chapter which is Literature Review and Project Methodology.

C Universiti Teknikal Malaysia Melaka

CHAPTER II

C Universiti Teknikal Malaysia Melaka

CHAPTER II

LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

According to Oliver (2004) the literature review is concerned primarily with the research and writing connected with the main subject matter of the research study". This chapter will consist all the subject matter and research element that related to this case study that will support the project development. It includes the entire research element that relevant to the project as well methodology.

2.2 Fact and Finding

The research element has been divided into Injection Molding Overview, 2D and 3D Simulation Approach in Education, Multimedia Courseware in Education, and Integrating Educational Technology into Teaching.

C Universiti Teknikal Malaysia Melaka