"Saya akui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kuasa Industri)."

Tandatangan

Nama Penyelia

: Encik Muhammad Fahmi Bin Miskon

Tarikh

: 18 November 2005

TRAINING MODULE FOR MOTORS FOR MECHATRONICS SYSTEM

HASNAH BINTI HARON

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat untuk penganugeraah Ijazah Sarjana Muda Kejuruteraan Elektrik (Kuasa Industri).

Fakulti Kejuruteraan Elektrik Kolej Universiti Teknikal Kebangsaan Malaysia

November 2005

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."

Tandatangan

Nama : Hasnah Binti Haron

Tarikh : 18 November 2005

Untuk ayah, En. Haron Bin Ahmad dan emak, Pn. Romlah Binti Senawi tersayang

PENGHARGAAN

Pertama sekali saya ingin mengucapkan setinggi-tinggi rasa syukur kehadrat Ilahi di atas kejayaan saya menyiapkan laporan projek ini dalam tempoh yang ditetapkan.

Di sini, saya ingin merakamkan ucapan terima kasih yang tidak terhingga kepada En. Muhammad Fahmi Bin Miskon selaku penyelia projek yang telah banyak memberi tunjuk ajar, bantuan dan pendapat untuk menghasilkan projek ini. Beliau sangat prihatin dan mengambil berat terhadap gerak kerja dalam melaksanakan projek ini dari awal hingga berjaya.

Akhir sekali, sekalung penghargaan kepada ibubapa yang banyak memberi dorongan, bantuan dan berdoa agar perlaksanaan projek ini berjalan dengan lancar. Tidak lupa juga kepada kaum keluarga dan rakan-rakan seperjuangan yang banyak memberi semangat dan sokongan. Sekali lagi ucapan jutaan terima kasih kepada semua yang terlibat sama ada secara langsung atau tidak untuk menjayakan projek ini. Sekian.

ABSTRAK

Projek ini bertujuan untuk merekabentuk satu modul latihan yang terdiri daripada perkakasan, perisian dan modul pembelajaran. Terdapat pelbagai jenis modul latihan yang berasaskan pengawal mikro terdapat di pasaran. Modul latihan ini berfungsi untuk mengawal pergerakkan motor yang terdiri daripada DC motor, Servo motor dan Stepper motor. Projek ini mengunakan kawalan mikro PIC untuk mengawal pergerakan motor. Pengawal mikro merupakan cip berteknologi tinggi yang boleh menyimpan dan melaksanakan aturcara. Bentuk pergerakkan motor-motor ditentukan oleh pengawal mikro mengikut kehendak pengguna dan aturcara yang telah ditulis. Operasi kawalan pergerakan motor adalah untuk mengawal kelajuan motor, pergerakan motor bergerak sama ada kehadapan dan kebelakang dan berhenti mengikut jarak yang ditetapkan. Pengawalan kelajuan putaran motor akan dilakukan dengan melaras voltan amatur atau voltan terminal. Perintang bolehubah digunakan untuk memberi voltan masukkan yang berkadaran dengan kelajuan putaran motor kepada PIC. Dengan menggunakan PIC, satu program khas dibuat untuk mengawal kelajuan putaran motor.

ABSTRACT

This project purposes to design training kit that including hardware, software and learning module. There are many training kit based on microcontroller in market. The function of training kit is to control the movement of motor that including DC motor, Servo motor and Stepper motor. This project will be using a PIC microcontroller to monitor the motor's speed. The microcontroller is a high technology chip that capable to storing and running a program. By using the PIC, a computer program is developed to control the motor's speed. Controlling the speed of the motor is done by adjusting the armature voltage or the terminal voltage. The motor's speed will be controlled by using a variable resistor to set the input voltage to PIC.

ISI KANDUNGAN

BAB	PERKARA	HALAMAN
	PENGESAHAN PENYELIA	
	TAJUK PROJEK	i
	PENGAKUAN	ii
	DEDIKASI	iii
	PENGHARGAAN	iv
	ABSTRAK	v
	ABSTRACT	vi
	ISI KANDUNGAN	vii
	SENARAI JADUAL	xi
	SENARAI RAJAH	xii
	SENARAI LAMPIRAN	xiv
	SENARAI SINGKATAN	xv
1	PENGENALAN	
	1.1 Kepentingan Projek	2
	1.2 Pernyataan Masalah	2
	1.3 Skop Projek	3
	1.4 Objektif Projek	3
	1.5 Struktur Laporan	4

2 LATARBELAKANG PROJEK

2.1	Penga	wal Mikro	o (Microcontroller)	5
2.2	Faktor	r-Faktor P	enggunaan	
	Penga	wal Mikro	0	6
2.3	Penga	wal Mikro	o PIC	8
	2.3.1	Kebaika	in PIC	8
2.4	Penga	wal Mikro	o PIC 16F877	9
	2.4.1	Ciri-ciri	PIC 16F877	9
	2.4.2	Memori		13
		2.4.2.1	Flash Program Memory	13
		2.4.2.2	Eeprom Data Memory	13
	2.4.3	Sempad	an (Peripherals)	14
	2.4.4	Bekalan	Kuasa	14
	2.4.5	Pengayu	ın Jam	15
2.5	Kajiar	DC Mot	or	16
	2.5.1	Perband	ingan Motor Pirau	
		Dan Mo	tor Siri.	17
	2.5.2	Tetimba	ing-H	17
2.6	Kajia	Servo M	fotor	19
2.7	Kajiai	Stepper	Motor	21
	2.7.1	Jenis-je	nis motor pelangkah	23
		2.7.1.11	Motor pelangkah jenis	
		1	Variable reluctance (VR)	23
		2.7.1.21	Motor pelangkah jenis	
		1	Permanent Magnet (PM)	_ 24
		2.7.1.3	Motor pelangkah jenis	
			Hybrid (HB)	24

	2.8	Perisian	25
		2.8.1 Perisian MPLAB IDE	25
		2.8.1.1 Proses Simulasi / debugging	
		ke atas Program	27
		2.8.2 IC Prog	27
3	KAJ	IAN LATAR BELAKANG	
	3.1	3067 - Dc Motor Speed Controller (100v/7.5a)	29
	3.2	Teleo Stepper Motor Controller User Guide	30
	3.3	8-Servo Controller Board	31
	3.4	Kesimpulan Daripada Kajian	32
4	мет	TODOLOGI PROJEK	
	4.1	Kajian Maklumat Dan Bahan	34
	4.2	Pemasangan Litar Dan Prototaip	35
		4.2.1 Menyediakan Komponen	35
		4.2.1.1 Litar Bekalan Kuasa 5 V	35
		4.2.1.2 Litar Dc Motor	36
		4.2.1.3 Litar Stepper Motor	36
		4.2.2 Menghasilkan Prototaip	37
	4.3	Menjalankan Eksperimen Ke Atas	
		Pengawal Mikro Dan Litar Skematik	39
	4.4	Menulis Modul Pembelajaran	41
5	HAS	SIL PROJEK	
	5.1	Modul Pembelajaran	42
	5.2	Prototaip	43

	5.3 Contoh Perlaksanaan Modul	43
6	KESIMPULAN	46
7	CADANGAN	47
	RUJUKAN	49
	I.AMPIRAN	51

SENARAI JADUAL

NO	TAJUK	HALAMAN
2.1	Kawalan Mikro 8-Bit Dan Ciri-Cirinya	7
2.2	Perbezaan Antara Pengawal Mikro	12
2.3	Perbandingan Motor Pirau Dan Siri	17

SENARAI RAJAH

NO	TAJUK	HALAMAN
2.1	Pandangan Atas Pic 16F877	9
2.2	Fizikal Luaran Pic16F877	10
2.3	Pengayun Jam Menggunakan Resonator	15
2.4	Pengayun Jam Menggunakan Crystal	15
2.5	Gambar DC Motor	16
2.6	H-bridge IC (L293B)	18
2.7	Menggunakan H-Bridge untuk	10
2.,	mengawal DC Motor	18
2.8	Contoh H-Bridge Mengawal	55
	Pergerakan DC Motor	19
2.9	Contoh Denyut Bagi Servo Motor	20
2.10	Contoh Pergerakkan Servo Motor	20
2.11	Gambar Servo Motor	21
2.12	Motor Ekakutub Dengan Lima Terminal	22
2.13	Gambar Stepper Motor	22
2.14	Keratan Rentas Motor Pelangkah	
	Variable Reluctance (VR)	23
2.15	Lakaran Motor Pelangkah Jenis	
	Permanent Magnet (PM)	24
2.16	Keratan Rentas Motor Pelangkah	
	Jenis Hybrid (HB)	24
2.17	Kaedah Memprogram PIC	25
2.18	Tetingkap MPLAB IDE Untuk Menulis Program	26

2.19	Tetingkap MPLAB IDE Debugging Untuk	
	Simulasi Program	27
2.20	Tetingkap IC Prog Untuk Memilih Jenis PIC	28
2.21	Tetingkap IC Prog Untuk Program IC	28
3.1	DC Motor Speed Controller	30
3.2	Teleo Stepper Motor Controller User Guide	31
3.3	8-Servo Controller Board	32
4.1	Carta Alir Projek	34
4.2	Litar Bekalan Kuasa 5 V	35
4.3	Litar DC Motor	36
4.4	Litar Stepper Motor	36
4.5	Gambarajah Ukuran Bagi Prototaip	37
4.6	Gambar DC, Servo dan Stepper motor	38
4.7	Gambar Motor-Motor Yang Telah Siap	
	Dipasang Casing	39
4.8	Litar Asas Pengawal Mikro	40
5.1	Contoh Litar Bagi Modul DC Motor	44
5.2	Contoh Pemasangan Litar di Breadboard	44
5.3	Pemasangan Litar Pada DC Motor	45

SENARAI LAMPIRAN

LAMPIRAN	TAJUK	HALAMAN
Α	Advantages of PIC Microcontroller	51
В	DC Motor Theory	53
C	What a Servo Motor?	55
D	Stepper Motors and Control	57
E	PIC16F87X Data Sheet	dalam CD-R
F	Perisian MPLAB	dalam CD-R
G	Perisian Ic Prog v1.05c	dalam CD-R
H	Automatic Speed Control of DC Motor	dalam CD-R
I	Servo Motor Connection	dalam CD-R
J	Stepper Teleo	dalam CD-R
K	Contoh Aturcara yang digunakan	dalam CD-R
L	Modul Pembelaiaran	dalam CD-R

SENARAI SINGKATAN

LSI - Large-scale Integration

VLSI - Very Large-scale Integration

CPU - Central Processing Unit

RAM - Random Access Memory

ROM - Read Only Memory

PIC - Peripheral Interface Controller

CMOS - Complementary Metal-Oxide Semiconductor

IC - Integrated Circuit

PWM - Pulse Width Modulation

MCU - Micro-Controller Unit

LED - Light-Emitting Diode

CCP - Capture/Compare/PWM

USART - Universal Synchronous Asyncronous Receiver Transmitter

BCD - Binary Code Decimal

DC - Direct Current

VAC - Voltan Arus Ulang Alik
I2C - Integrated Inter Circuits

FKE - Fakulti Kejuruteraan Elektrik

KUTKM - Kolej Universiti Teknikal Kebangsaan Malaysia

BEKP - Sarjana Muda Kejuruteraan Elektrik Kuasa Industri

BAB 1

PENGENALAN

Bab ini akan menerangkan secara keseluruhan mengenai projek *Training Module For Motors For Mechatronics System* seperti kepentingan projek, pernyataan masalah, skop projek, objektif projek dan struktur laporan. Selain itu bab ini juga akan menerangkan secara ringkas gerak kerja dari awal hingga projek ini berjaya sebelum memasuki bab seterusnya secara mendalam.

Modul latihan merupakan antara salah satu daripada alat bantu pengajaran dan pembelajaran yang banyak digunakan terutama sekali di institusi-institusi pendidikan seperti di sekolah, kolej, universiti dan sebagainya. Biasanya modul ini digunakan untuk subjek praktikal dan ianya memerlukan pengaplikasian daripada pengguna.

1.1 KEPENTINGAN PROJEK

Terdapat pelbagai jenis modul latihan di pasaran yang kebanyakkannya menggunakan pengawal mikro dan penggunaan motor. Tetapi kebanyakkan pengguna menghadapi kesukaran untuk memahami modul tersebut kerana tidak diterangkan cara-cara penggunaannya. Oleh itu, dengan terhasilnya *Training Module For Motors For Mechatronic System* ini, ia dapat membantu menyelesaikan masalah tersebut kerana projek ini disertakan dengan modulnya sekali.

Selain itu, modul ini penting kerana mengikut perancangan, KUTKM akan mewujudkan satu subjek baru iaitu Teknologi Mikropengawal pada 2007 akan datang. Oleh itu, ia sedikit sebanyak dapat membantu para pensyarah dalam penyediaan silibus untuk subjek tersebut. Di samping itu, ia dapat membantu pelajar meningkatkan pemahaman dalam subjek praktikal.

1.2 PERNYATAAN MASALAH

Di pasaran tidak terdapat training kit yang menggabungkan ketiga-tiga motor ini. Para pelajar kurang memahami kerana tidak terdapat penjelasan yang mendalam tentang apa yang mereka lakukan.

Dengan adanya modul ini, ia akan membantu mereka supaya memahami langkah-langkah perlaksanaannya. Ini kerana modul ini disertakan dengan arahan dan cara-cara perlaksanaannya.

1.3 SKOP PROJEK

Skop bagi projek ini ialah :-

- a) Menghasilkan modul pembelajaran yang mudah difahami untuk DC Motor, RC Servo Motor dan Stepper Motor.
- b) Menulis aturcara untuk mengawal pergerakan motor-motor tersebut.
- c) Membina prototaip perkakasan training.

1.4 OBJEKTIF PROJEK

Beberapa objektif telah ditetapkan bagi mencapai matlamat projek ini, Objektif - objektif tersebut ialah :-

- a) Untuk menyediakan training kit bagi tujuan pembelajaran.
- b) Untuk menghasilkan modul pembelajaran.
- Untuk memudahkan pelajar untuk mempelajari tentang dc, servo dan stepper motor.
- d) Untuk menghasilkan satu prototaip modul yang lengkap mempunyai perkakasan, perisian dan modul pembelajaran.

1.5 STRUKTUR LAPORAN

Secara keseluruhannya, laporan ini mempunyai 7 bab yang akan menerangkan secara mendalam mengenai projek ini. Bab 1 adalah bab pengenalan yang akan memberi gambaran ringkas kepada projek seperti kepentingan projek, pernyataan masalah, skop projek, objektif projek dan struktur laporan.

Bab 2 akan membincangkan mengenai latar belakang projek yang merangkumi kajian mengenai PIC 16F877, DC Motor, RC Servo Motor, Stepper Motor dan software yang berkaitan dengan projek. Seterusnya Bab 3 menerangkan mengenai kajian latar belakang modul latihan yang sedia ada dan modul tersebut dikaji ciri-cirinya dan membincangkan permasalahan dengan kajian. Bab 4 pula membicarakan mengenai teknik dan kaedah pelaksanaan dalam projek ini.

Kemudian Bab 5 adalah bab yang membincangkan tentang hasil projek manakala Bab 6 pula mengandungi kesimpulan. Dalam bab ini kesimpulan dibuat terhadap pencapaian dan pembelajaran yang diperolehi dalam melaksanakan projek ini dari peringkat permulaan hingga berjaya. Bab terakhir dalam tesis ini pula ialah bab 7 iaitu cadangan. Cadangan dibuat untuk meningkatkan tahap operasi projek agar lebih baik pada masa akan datang.

BAB 2

LATARBELAKANG PROJEK

Bab ini membincangkan tentang teori dan konsep projek secara menyeluruh. Perbincangan ini bertujuan untuk menerangkan kaedah yang telah digunakan dalam penyelidikkan yang lepas dan melihat hubungkait projek ini dengan kajian dan teori yang sedia ada.

2.1 PENGAWAL MIKRO (MICROCONTROLLER)

Pengawal mikro juga di kenali sebagai "otak komputer" atau pemprosesan mikro. Ia merupakan satu revolusi komputer sejak 15 tahun yang lepas yang mempunyai kelajuan tinggi dan saiz yang lebih kecil. Revolusi ini dijadikan sebagai satu keputusan dalam penghasilan teknologi Large-scale Integration (LSI) dan Very Large-scale Integration (VLSI) yang mana beribu-ribu transistor dimasukkan ke dalam satu chip. Kaedah ini telah membuatkan satu sistem kawalan sesuatu aplikasi menjadi lebih mudah dan cekap. Pengawal mikro ini biasanya mempunyai [1] Central Processing Unit (CPU), Random Access Memory (RAM), Read Only Memory (ROM), pin masukkan dan keluaran, memori dan bahagian lain-lain.

2.2 FAKTOR-FAKTOR PENGGUNAAN PENGAWAL MIKRO

Faktor utama penggunaan pengawal mikro adalah kerana ianya mudah diperolehi di samping harganya yang murah berbanding dengan litar sepadu yang lain di pasaran seperti IC MC14528B yang berfungsi untuk menghasilkan denyut. Pengawal mikro juga mampu menghasilkan denyut tetapi dengan kos yang lebih murah.

Faktor ke dua penggunaannya adalah kerana kebolehan pengawal mikro itu untuk diprogramkan semula oleh pengguna [2]. Di sini, pengguna dapat memprogramkan pengawal mikro mengikut aplikasi projek yang hendak dilaksanakan berdasarkan pin keluaran dan masukkan yang disediakan.

Seterusnya pengawal mikro ini boleh diprogramkan dalam pelbagai bahasa perisian seperti C, C++, basic pro, assembly language dan lain-lain bahasa. Tetapi, para pengguna perlulah menggunakan perisian tertentu sebagai perantaraan apabila hendak memasukkan program ke dalam pengawal mikro ini.

Selain itu, pengawal mikro juga dapat menjalankan operasi logik dan matematik [2]. Operasi ini amat penting dalam sesuatu aplikasi projek. Sebagai contoh, penggunakan boleh membuat program logik untuk menukarkan masukkan analog ke digital (ADC).

Terdapat pelbagai jenis pengawal mikro di pasaran pada hari ini yang lebih murah dan kecekapan yang tinggi. Jadual 2.1 adalah senarai pengawal mikro 8-bit dan ciri-cirinya.

Jadual 2.1: Kawalan mikro 8-bit dan ciri-cirinya.

SYARIKAT	PERANTI	MEMORI	CIRI-CIRI
Atmel	Attiny II	1-Kbyte flash	Pemasa 8-bit, pembanding analog, watchdog, pengayun dalamam, pencelah luaran.
Hitachi	H8/3640	8-Kbyte ROM 512 Byte RAM	3 pemasa 8-bit, stu pemasa PWM 16-bit, watchdog, 2 pin SCI, 8 ADC 8-bit, Penjana sub masa 32 KHz.
Microchip	PIC16CR54C	768-byte ROM 25-byte Ram	12 pin I/O, pemasa 8-bit, arus picuan yang tinggi untuk LED, watchdog, pengayun RC.
Motorola	68HC705KJ1	1240-byte OTP 64-byte RAM	Pemasa multiguna15- stage, pengayun, reset voltan rendah, watchdog, I/O pin arus tinggi.
Zilog	Z8E000	0.5-Kbyte OTP 32-byte RAM	Pemasa 16-bit, Watchdog, pencelah 4 perkakasan, 13 pin I/O.

2.3 PENGAWAL MIKRO PIC

Biasanya PIC dianggap sebagai kawalan perantaraan antara perkakasan dan perisian. Dengan adanya PIC, masalah kecekapan litar dapat diatasi jika dibandingkan dengan penggunaan komponen elektronik biasa yang dipengaruhi oleh faktor suhu dan hingar [3].

Terdapat beberapa jenis PIC di pasaran seperti 12CXXX, 16C5X, 16F87X, 17CXXX dan yang terbaru adalah 18CXXX. Setiap jenis PIC ini mempunyai ciri-ciri tersendiri seperti bilangan pin keluaran dan masukkan, memori, kelajuan, fungsifungsi tertentu dan lain-lain.

2.3.1 Kebaikan PIC

Antara beberapa kebaikan PIC ialah ia cepat bertindakbalas dengan sistem [4]. Ini bermaksud apabila suis yang dikawal oleh PIC ditekan, sistem akan terus berfungsi dan tiada masa lengah yang dapat dikesan. PIC merupakan satu peranti yang perlu diprogram sebelum digunakan dalam sesuatu sistem. Bahasa yang digunakan untuk memprogramkan PIC adalah terhad, maka mudah untuk difahami oleh pengguna.

Selain daripada itu, PIC merupakan satu peranti yang mesra pengguna iaitu boleh diprogramkan semula jika berlaku kesilapan atau ingin meningkatkan penambahbaikkan sistem. Penggunaannya juga dapat menjimatkan ruang dan projek