HYBRID LEARNING CONTROL SCHEMES WITH INPUT SHAPING OF A FLEXIBLE MANIPULATOR SYSTEM

AMIRUL AIZAT BIN MOHD RAZALI

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka (UTeM)

June 2012

NY MA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Ejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : MANI Sesi : 1 Pengajian	ID LEARNING INPUT SHAPING OF A FLEXIBLE PULATOR SYTEM 1 / 1 2
-	HD RAZALI mengaku membenarkan Laporan Projek Sarjana Muda
ini disimpan di Perpustakaan den	gan syarat-syarat kegunaan seperti berikut:
2. Perpustakaan dibenarkan mer	iversiti Teknikal Malaysia Melaka. mbuat salinan untuk tujuan pengajian sahaja. mbuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENU	JLIS) (COP DAN TANDATANGAN PENYELIA)
Tarikh:	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the reference"

Signature	:
Author	: AMIRUL AIZAT BIN MOHD RAZALI
Date	:

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for award of Bachelor of Electronic Engineering (Industrial Electronics) with Honors"

Signature	:
Supervisor's Name	: PN AZDIANA BT MD YUSOP
Date	:

Dedicated to my family especially my parents, sister, brothers, and all of my friends.

ACKNOWLEDMENT

I would like to thank ALLAH SWT for His blessing and strengths to endure and carry on my final year project up to completion. Next, I would like to thank my supervisor, Pn Azdiana bt Md Yusop, for all her teachings and guidance, and her experience help on this work. It has been a hardship for you, sorry and thank you so much. I would also like to thank all other colleagues and friends for their help, discussions and information sharing. Finally I would like to thank my father and mother for all their love, sacrifice, understanding and support during this project.

ABSTRACT

Input shaping is a simple method for reducing the residual vibration in positioning lightly damped systems. Although several input shaping techniques have been derived to control a flexible manipulator system without payload, theoretical results are hard to be traced for their application to control a flexible manipulator system in real time. This project attempts to describe a practical approach to investigate and develop a hybrid iterative learning control scheme with input shaping. An experimental flexible manipulator rig and corresponding simulation environment are used to demonstrate the effectiveness of the proposed control strategy. In this work, a single link flexible robot manipulator that moves in horizontal plane is considered. A collocated proportional-integral-derivative (PID) controller utilizing hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to control the system with acceleration feedback for optimization of the learning parameters and a feed forward controller based for nonlinear model closed loop system on input shaping technique for control of vibration (flexible motion) of the system. The system performance with the controllers is presented and analysed in simulation using MATLAB and SIMULINK. The performance of the PID controller with input shaping is assessed in terms of level of vibration reduction. The effectiveness of the control schemes in handling various speed of flexible link is also analyzed. The performance of the system in term of with and without input shaping method also been compared. From the simulation results, satisfactory vibration reduction of a flexible manipulator has been achieved using the proposed method.

ABSTRAK

Pembentukan input adalah satu kaedah mudah untuk mengurangkan getaran sisa dalam kedudukan sistem teredam ringan. Walaupun beberapa pembentukan input teknik telah dirumuskan untuk mengawal sistem manipulator fleksibel tanpa muatan, secara teorinya keputusan untuk aplikasi adalah sukar untuk dikenal pasti dan diperolehi untuk mengawal sistem manipulator fleksibel dalam model sebenar. Projek ini cuba untuk menerangkan pendekatan yang praktikal untuk menyiasat dan membangunkan skim hibrid kawalan pembelajaran iteratif dengan pembentukan input. Satu eksperimental manipulator fleksibel dan persekitaran simulasi yang sepadan digunakan untuk menunjukkan kebersanan strategi kawalan yang dicadangkan. Dalam kajian ini, fleksibel robot manipulator yang bergerak dalam satah mengufuk dipertimbangkan. Satu pengawal 'collocated proportional-integralderivative (PID)' menggunakan maklum balas 'hub-angle' dan 'hub-velocity' dibangunkan untuk mengawal pergerakan jasad tegar system ini. Ini kemudiannya dilanjutkan untuk menggabungkan kawalan pembelajaran iteratif dengan maklum balas pecutan untuk pengoptimuman parameter pembelajaran dan pengawal 'feedforward' untuk model 'nonlinear' sistem 'closed loop' berdasarkan teknik pembentukan input untuk mengawal getaran sistem (gerakan fleksibel). Prestasi sistem dengan pengawal dikemukakan dan dianalisis dalam simulasi menggunakan MATLAB dan SIMULINK. Prestasi pengawal 'PID' dengan pembentukan input dinilai dari segi tahap pengurangan getaran. Keberkesanan skim kawalan dalam mengendalikan pelbagai kelajuan juga dianalisis. Prestasi sistem dengan pembentukan input dan tanpa pembentukan input juga telah dibandingkan. Dari keputusan simulasi didapati pengurangan kadar getaran yang memuaskan telah diperolehi menggunakan teknik yang diperkenalkan.

LIST OF CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
REPORT STATUS VERIFICATION FORM	ii
DECLARATION	iii
SUPERVISOR VERIFICATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
LIST OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	XV
ABBREVIATIONS	xviii

I INTRODUCTION

1.1	Project Introduction	1
1.2	Objectives	3
1.3	Problem Statement	3
1.4	Scopes	4
1.5	Methodology	5
1.6	Thesis Outline	6

II LITERATURE REVIEW

2.1	Introduction	
2.2	Literature Review of Flexible Manipulator Controller	7
	2.2.1 Feedback Control Technique	8
	2.2.2 Feedforward Control Technique	9
2.3	Flexible Manipulator System	9
2.4	Iterative Learning Control	10
2.5	Control System	11
	2.5.1 Open-loop and Closed-Loop Control System	11
2.6	Input Shaping	13
	2.6.1 Advantages of Input Shaping Methods	15
2.7	Summary of This Chapter	16

III RESEARCH METHODOLOGY

3.1	Introdu	uction	17
3.2	Contro	ol Schemes	17
	3.2.1	Collocated PD Control	18
3.3	PID C	ontroller	19
	3.3.1	Proportional Control	21
	3.3.2	Integral Control	22
	3.3.3	Derivative Control	23
3.4	Tuning	g Parameter	25
3.5	Time I	Response	26

6

IV RESULTS AND ANALYSIS

Introd	Introduction	
MATI	LAB and SIMULINK	29
4.2.1	MATLAB	30
4.2.2	SIMULINK	32
Mode	lling of Flexible Manipulator System	35
4.3.1	Nonlinear Model of Flexible System	36
4.3.2	Closed Loop Control System of the Flexible	
	Manipulator System	38
	4.3.2.1 Flexible manipulator System without	
	Controller	38
	4.3.2.2 Flexible Manipulator System with	
	PID Controller	40
	4.3.2.3 Flexible Manipulator System with	
	Input Shaping and PID Controller	41
Simul	ation Result	42
4.4.1	Simulation Result for Flexible Manipulator	
	System without Controller	42
4.4.2	Simulation Result for Flexible Manipulator	
	System with PID Controller	44
4.4.3	Simulation Result for Flexible Manipulator	
	System with Input Shaping and PID Controller	47
	4.4.3.1 Input Shaping Block Diagram	49
	4.4.3.2 Simulation Result	51
Result	t Analysis	53
Summ	nary of This Chapter	55
	MAT 4.2.1 4.2.2 Mode 4.3.1 4.3.2 Simul 4.4.1 4.4.2 4.4.3 Result	 MATLAB and SIMULINK 4.2.1 MATLAB 4.2.2 SIMULINK Modelling of Flexible Manipulator System 4.3.1 Nonlinear Model of Flexible System 4.3.2 Closed Loop Control System of the Flexible Manipulator System 4.3.2.1 Flexible manipulator System without Controller 4.3.2.2 Flexible Manipulator System with PID Controller 4.3.2.3 Flexible Manipulator System with Input Shaping and PID Controller Simulation Result for Flexible Manipulator System without Controller 4.4.1 Simulation Result for Flexible Manipulator System without Controller 4.4.2 Simulation Result for Flexible Manipulator System without Controller 4.4.3 Simulation Result for Flexible Manipulator System with PID Controller 4.4.3 Simulation Result for Flexible Manipulator System with Input Shaping and PID Controller 4.4.3 Simulation Result for Flexible Manipulator

V HARDWARE DEVELOPMENT AND ANALYSIS

5.1	Introduction		56
5.2	5.2 List of hardware		56
	5.2.1	Stepper Motor RS 440-420	57
	5.2.2	SK40C Microcontroller Board	57
	5.2.3	PIC16F877A Microprocessor	58
	5.2.4	DAQ Card PCI-6024E	59
	5.2.5	BNC-2110	61
	5.2.6	Vibration Sensor	61
	5.2.7	Flexible Link	62
5.3	List of	f Circuits	63
	5.3.1	Stepper motor driver	63
		5.3.1.1 ULN2003A Motor Driver	64
		5.3.1.2 PCB Design of Driver Circuit	65
	5.3.2	Power Supply Circuit	67
	5.3.3	Amplifier circuit	70
5.4	Design	ning of Flexible Manipulator System	71
	5.4.1	The Drawing Design of Flexible Manipulator	71
	5.4.2	The Actual Model of the System	71
5.5	Hardw	vare Interfacing	73
5.6	Hardw	vare Result and Analysis	75
	5.6.1	Hardware Analysis	75
	5.6.2	Real Time Workshop (RTW) Result and Analysis	77

VI CONCLUSION

6.1	Introduction	79
6.2	Conclusion	79
6.3	Future Works	81

REFERENCES	82
APPENDIX A	84
APPENDIX B	85
APPENDIX C	86

LIST OF TABLES

NO TITLE

PAGE

3.1	Summarizes of the PID Terms and Their Effect on Control System	20
3.2	Characteristic of P, I, and D (Effects of Increasing Parameters)	21
3.3	Tuning Parameters	26
4.1	Categories of MATLAB Works and Description	31
4.2	Simulink Description	33
4.3	Simulink Product and Description	34
4.4	Parameters of Flexible System	37
4.5	Comparison of Hub Angle Output Response	53
4.6	Comparison of Hub Velocity (End-Point Acceleration) Output	
	Response	54
5.1	Stepper Motor Wire Color	57
5.2	Specification of Flexible Link	63
5.3	The Connection of Pins IC ULN2003A and Its Function	65
5.4	Component Required For Power Supply Circuit	68
5.5	The value of voltage when time delay is changed	76

LIST OF FIGURES

NO TITLE

PAGE

1.1	Flow Chart of Project Methodology	5		
2.1	Description of The Manipulator System			
2.2	Block Diagram of a Control System			
2.3	Open-Loop Control Systems			
2.4	Closed-Loop Control Systems			
2.5	The Input Shaping Process			
2.6	Destructive Interference			
2.7	Input Shaper Position in a System			
3.1	PID Controllers Block Diagram	19		
3.2	Step Responses for P Controller	22		
3.3	Step Responses for P, I and PI Controller	23		
3.4	Step Responses for P, D and PD Controller	24		
3.5	Step Responses for P, PI and PID Controller	25		
3.6	Underdamped Step Responses	27		
4.1	Default Appearance of the Desktop	31		
4.2	Simulink Library	34		
4.3	Simulink Library Browser for Real-Time Workshop	35		
4.4	The Block Diagram of Flexible Manipulator System	36		
4.5	The Nonlinear Model of Flexible Manipulator System	37		
4.6	Flexible Manipulator System without Controller Block Diagram	39		
4.7	Block Parameter for the System without Controller	39		
4.8	Flexible manipulator system with PID Controller Block Diagram	40		
4.9	Block parameter for system with PID controller	40		

4.10	Flexible Manipulator System with Input Shaping and PID			
	Controller Block Diagram	41		
4.11	Block Parameter for System with Input Shaping and PID			
	Controller	42		
4.12	Graph of Flexible Manipulator's Hub Angle			
4.13	Graph of Flexible Manipulator's Hub Velocity			
4.14	Graph of Flexible Manipulator's Hub Angle			
4.15	Graph of Flexible Manipulator's Hub Velocity			
4.16	PID Value of Hub Velocity (Outer Loop)			
4.17	PID Value of Hub Angle (Inner Loop)			
4.18	Input Shaping Block Input System			
4.19	Shaped Input Signal			
4.20	Step Function of Step Input	50		
4.21	Step Function of Input Shaper			
4.22	Graph of Flexible Manipulator's Hub Angle			
4.23	Graph of Flexible Manipulator's Hub Velocity			
5.1	Stepper Motor RS 440-420			
5.2	SK40C circuit			
5.3	The PIC16F877A Microprocessor			
5.4	DAQ Card PCI-6024E			
5.5	The BNC-2110			
5.6	Vibration Sensor			
5.7	Flexible Link			
5.8	Stepper Motor Driver Schematic			
5.9	IC ULN2003A	64		
5.10	PCB Layout Design for Stepper Driver Motor	66		
5.11	The 3D View of the PCB Layout	66		
5.12	The Bottom View of PCB Circuit	67		
5.13	The PCB Circuit with Components			
5.14	Schematic Diagram for Power Supply +9Vdc and +12Vdc	69		
5.15	The Power Supply Model 6			
5.16	Amplifier Circuit for Vibration Sensor			
5.17	Drawing Design of Flexible Manipulator	71		

5.18	The Actual Model	72	
5.19	The Actual Model with Labelling		
5.20	The Circuit Connection		
5.21	Interfacing Diagram		
5.22	Interfacing Connection		
5.23	Graph Voltage vs Time Delay		
5.24	Analog Input/output with System		
5.25	Block Diagram of Flexible Manipulator System with Input		
	Shaping and PID Controller for RTW Simulation		

ABBREVIATIONS

PID	-	Proportional-Integral-Derivative
ILC	-	Iterative Learning Control
PhD	-	Doctor of Philosophy
K_p	-	Proportional Gains
K_i	-	Integral Gains
K_{v}	-	Derivative Gains
θ	-	Hub Angle
$\dot{ heta}$	-	Hub velocity
A_c	-	Motor Amplifier Gain
ξ	-	Damping ratio
ω _n	-	Natural frequency
NI	-	National Instrument
DC	-	Direct Current
AC	-	Alternating Current
DAQ	-	Data Acquisition Board
ADC	-	Analog to Digital Converter
CPU	-	Central Processing Unit
IC	-	Integrated circuit
PCB	-	Printed Circuit Board
PCI	-	Peripheral Component Interconnect
SISO	-	Single Input Single Output
MIMO	-	Multiple Input Multiple Output
OS	-	Over Shoot
RTW	-	Real Time Workshop
RTWT	-	Real Time Windows Target

CHAPTER I

INTRODUCTION

1.1 Project Introduction

Robot manipulators are widely used in space and industrial applications. Nowadays, robotic manipulators can be used for completing the complex tasks such as assembling and working for unmanned places. Traditional robot manipulators have been built and design with the high structural stiffness by using heavy and bulky materials; hence some drawbacks such as low motion speed, high power consumption, high capacity actuators and high manufacturing cost may appear. These problems occur due to the condition where the robot manipulators are usually heavy with respect to their payloads.

Flexible manipulator system is an important element in today's manufacturing and assembly industry. It is capable of performing many different tasks and operations precisely without requiring common safety and comforts the human need. Flexible manipulator systems are driven by computers. Their motions are controlled by a controller that is under the supervision of the computer.

Flexible robotic manipulators are known by its advantages over conventional rigid robotic arms; they require less material, are lighter in weight, have higher manipulation speed, lower power consumption, require smaller actuators, are more manoeuvrable and transportable, are safer to operate due to reduced inertia, have enhanced back-drive ability due to elimination of gearing, have less overall cost and higher payload to robot weight ratio [1]. These advantages lead to the usage of flexible manipulators for many complex and dangerous applications that include in space exploration and hazardous environments.

However, the control of flexible manipulators to maintain accurate positioning is an extremely challenging problem. Due to the flexible nature and distributed characteristics of the system, the dynamics are highly non-linear and complex. Problems arise due to precise positioning requirement, vibration due to system flexibility, difficulty in obtaining accurate model of the system and nonminimum phase characteristics [2, 3]. There exists a residual vibration in flexible robot manipulators systems, in which the end effect or keeps vibrating even though nominal motion is already completed.

The actual goal in the flexible manipulator modelling system is to achieve a model that can represent the actual system behaviour. In this respect, a control mechanism that accounts for both the rigid body and flexural motions of the system is required in order to maintain the end-point positional accuracy. If the advantages associated with lightness are not to be sacrificed, accurate models and efficient controller for flexible robot manipulators have to be developed.

The control strategies for flexible manipulator systems can be divided into feedforward and feedback control. In order to reduce end-point vibration, the traditional closed-loop feedback can be used. The closed-loop system will then benefit from the inherent advantages of feedback, such as noise attenuation, disturbance rejection and insensitivity to parameter variations. Nevertheless, the feedback system can be difficult to implement in practice because it requires reliable sensor information for feedback, which is not be so easily available. Another method is input shaping, that is a feedforward technique used to reduce residual vibration of the system, where the input is typically convolved with a sequence of impulses (an input shaper) to yield a shaped input. These methods are popular in industry because they are relatively simple to implement the preshaped input together with closed-loop feedback strategies to receive the benefits of both systems.

1.2 Objectives

This project attempts to design a controller by using hybrid learning control scheme with input shaping for flexible manipulator system that can move as robustness, quickly, accurately and safely as possible without residual vibration during the operation. The simulation of the dynamic model will be performed by using MATLAB and SIMULINK.

1.3 Problem Statement

The residual vibration that occur in the flexible manipulator system during the operation interfere the performance of the manipulator. Flexible robot structures vibration problems when commanded to perform rapid motion. These vibrations are not important and can be ignored if it operates at low speed. However, in moderate high speed system these vibrations become larger and important. At this condition, because various parts of the structure no longer move the way they were intended to move and the system performance will be affected when vibration occurs during the movement of a flexible manipulator. This is a serious problem especially for the application that needs high accuracy. Moreover, the behaviour of the system is significantly affected by payload variations.

The performance of the input shaping technique in modelling the flexible manipulators has been previously investigated. These investigations show that this technique can be used to obtain a good representation of the system. It has been proved that input shaping is sufficient to reduce or eliminate the residual vibration of a flexible manipulator. However, the effects of hybrid learning control schemes with input shaping in handling payloads have not been satisfactorily addressed.

1.4 Scopes

While doing the project, the scope of work plays very important role, which is a guidelines for student should attain to fulfil the requirement of the project. This project focuses on:

- i. Literature review on the concept flexible manipulator system, input shaping method design and PID algorithm.
- Design and build the model of flexible manipulator by using closedloop system in MATLAB.
- iii. Implement the hybrid input shaping method with PID controller into the closed-loop system.
- iv. Develop the actual model of a single-link flexible manipulator that moves in a horizontal plane.
- v. Integrate between the hardware and the software to using SIMULINK and Real Time Workshop (RTW) in order to get the desired output.

1.5 Methodology

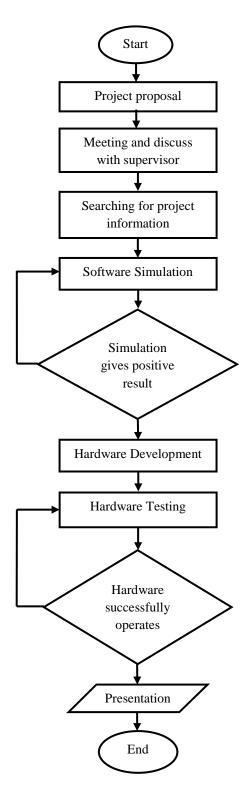


Figure 1.1: Flow Chart of Project Methodology

1.6 Thesis Outline

This thesis consists of five chapters. Chapter I provide some background of the project, the objective and the scope of project. Chapter II contains the literature review on previous researches, several important concepts of input shaping, technology and tools used in the study. Chapter III discusses the research methodology in order to complete this project. Every stages of research methodology are briefly portrayed in flow chart. It also explained the mathematical and simulation tools that used to realize this project. Chapter IV follows with the result and analysis part. This chapter also explains the simulation environment, the initial values of each parameter, the MATLAB simulation and SIMULINK used in simulation part of final derived model of a single-link flexible manipulator. It also includes the simulation results of a single-link flexible manipulator, the analysis of the simulation results and the discussion related to simulation results. Chapter V discusses on the hardware development and analysis. Besides that, this chapter also will discuss detailed about the hardware design contents schematic diagram, wire diagram, products needed, and components required in order to build a flexible manipulator model as prototype in this project. The project is then concluded in Chapter VI with some recommendations and future works.

1.7 Summary of This Chapter

This chapter introduced this project with the advantages of flexible manipulator compared to rigid arm. This chapter also described the objectives and scope of this project. The outline of thesis is discussed in the final part of this chapter.