INVESTIGATION OF MICROSTRIP PARALLEL COUPLE WIDEBAND FILTER (WCDMA APPLICATION)

ABDUL HALIM BIN MUSTAFA

This report is submitted in partial fulfillment of requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

MAY, 2007

PENGKAJIAN PENAPIS JALUR LEBAR MIKROSTRIP GANDINGAN SELARI(APLIKASI WCDMA)

ABDUL HALIM BIN MUSTAFA

Laporan ini dikemukakan untuk memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) dengan kepujian

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

MEI, 2007

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

INVESTIGATION OF MICROSTRIP PARALLEL Tajuk Projek

COUPLED WIDEBAD FILTER (WCDMA

APPLICATION)

Sesi

Pengajian

SESI 2006/2007

Saya

ABDUL HALIM BIN MUSTAFA

(HURUF BESAR)

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

- Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- Sila tandakan (√):

	SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
$\overline{\mathcal{L}}$	TIDAK TERHAD	

(TANDATANGAN PENULIS)

Alamat Tetap: NO. 18-4-2 KELUMPUK SUNDING MALAM D JALAN 20/56 AMPANG HULU KLANG 54200 KUALA LUMPUR

Disahkan oleh:

(COP DAN TANDATANGAN PENYELIA)

ABD SHUKUR B JA'AFAR

Pensyarah Fakulti Kej Elektronik dan Kej Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Karung Berkunci 1200.

Ayer Keroh, 75450 Melaka

Tarikh: 11-07-2007

Tarikh:

110507

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature:

Author: ABDUL HALIM BIN MUSTAFA

Date: 7 MAY 2007

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya telah saya jelaskan sumbernya."

Tandatangan:

Nama Penulis: ABDUL HALIM BIN MUSTAFA

Tarikh: 7 MEI 2007

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours."

Supervisor's Name: EN ABD SHUKUR BIN JA'AFAR

Tarikh: 110507

"Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) dengan kepujian."

Tandatangan: Nama Penyelia: EN ABD SHUKUR BIN JA'AFAR

Specially for my loving mum, dad and to my young brothers.

ACKNOWLEDGEMENT

First of all, I would to thanks to ALLAH SWT, for helping and blesses me through all the obstacles that I encountered while doing this project.

I also would to thank to my supervisor, En Abd Shukur bin Ja'afar for his support and guidance while doing this project. His idea and knowledge have helped me a lot in doing this project. He provides a motivation and enthusiastic atmosphere during the discussion we had. His assignment and work during lecture has given many advantage and help me to continue in the correct path during the development of this project.

Also appreciation to my family because they encouragement and never ending support. Their support and lovely companionship is another important source of strength for me. To all my friends and classmate, thanks for all of the idea, teach, and wishes. Our hard effort while doing the research is not useless.

Lastly, I would like to acknowledge every individual who give me a helping hand in order to achieve this accomplishment.

ABSTRACT

This report provides the reader with a detailed and comprehensive study of theory, design, fabrication, result and problem encountered in the designing bandpass RF microwave filter. The approaches used to achieve this project are through literature review, dimensional calculation and computer software simulation. These approaches are used to analyze the characteristic and the required specification before fabricating the microstrip bandpass filter. Computer simulation is the best technique to get the solution because it is fast and economical. To achieve this purpose, a computer software Microwave Office is used to analyze the characteristic of the microstrip bandpass filter and to determine its suitable parameters. The filter implementation that is chosen is parallel couple and the type is Chebyshev. This research generally is divided into three stages which literature review and dimensional calculation followed by software simulation and lastly fabrication, testing and analysis of the result. The filter design operating at center frequency 1.95GHz using FR4 (epoxy glass) as a substrate.

ABSTRAK

Laporan ini memberi maklumat secara terperinci kepada pembaca mengenai teori, rekabentuk, proses fabrikasi, keputusan dan permasalahan yang wujud dalam proses merekabentuk penapis lulur jalur gelombang mikro. Pendekatan yang telah dilaksanakan untuk menjayakan projek ini ialah menggunakan kaedah kajian secara ilmiah, pengiraan dimensi dan simulasi perisian computer. Ketiga - tiga pendekatan ini adalah perlu untuk menganalisa sama ada ciri-ciri penapis lulur jalur bagi memenuhi spesifikasi yang diperlukan sebelum proses fabrikasi dilakukan. Simulasi perisian computer adalah cara penyelesaian yang terbaik kerana ianya cepat dan ekonomik.Untuk tujuan ini, perisian computer Microwave office telah digunakan untuk menganalisa ciri ciri dan seterusnya menentukan jenis parameter penapis lulur jalur yang sesuai untuk proses merekabentuk.Kajian ini secara amnye terbahagi kepada beberapa peringkat iaitu, kajian ilmiah,pengiraan dimensi, membuat simulasi litar, fabrikasi litar penapis yang direkabentuk dan selanjutnye mengukur serta menganalisa keputusan ujikaji. Kaedah merekabentuk yang digunakan adalah dengan menggunakan penapis gandingan selari dan jenis penapis gandingan selari adalah Chebyshev.Rekabentuk penapis ini akan beroperasi pada frekuensi tengah 1.95 GHz dengan bahan dielektrik FR4 (kaca epoksi).

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	iii
	DEDICATION	vii
	ACKNOWLEDGEMENT	viii
	ABSTRACT	ix
	ABSTRAK	x
	TABLE OF CONTENTS	xi
	LIST OF TABLES	xiv
	LIST OF FIGURES	xv
	LIST OF APPENDIX	xvii
I	INTRODUCTION	
	1.1)Introduction	1
	1.2) Bandpass microwave filter design propose	2
	1.3) Objective	3
	1.4) Scope Of Work	3
	1.5) Methodology	4
п	BACKGROUND STUDY	
	2.1) Introduction to WCDMA	7
	2.1.1) WCDMA Specifications	8

VI	
Λ	

	2.1.2) Multirate user data transmission	9
	2.1.3) Handover	10
	2.1.4) Handover Between GSM and WCDMA	11
	2.1.5) Packet Data	11
	2.2) Definition of microstrip	14
	2.2.1) Overview of microstrip	15
	2.2.2) The advantages of microstrip	10
	2. 2.3) The disadvantages of micro strip	17
	2. 2.4) The basic elements of microstrip filter	17
	2.2.5) Microstrip transmission line	19
	2.2.6) Substrate materials.	19
	2.2.7) Dielectric materials	20
	2.2.8) The communication system using	21
	micro strip filter.	
Ш	FILTER THEORY	
	3.1) Introduction	23
	3.2) Types of Filters	
	24	
	3.2.1) Passive filters	25
	3.2.1.1) Types of Passive Filter	20
	3.2.1.2) Basic Low Pass Filter	28
	3.2.1.3) Basic High Pass Filter	29
	3.3) Chebyschev Filter	30
	3.3.1) Type I Chebyshev filter	31
	3.3.2) Type II Chebyshev filter	32
	3.4) Bessel Filter	33
	3.5)Butterworth Filter	34
	3.6) Elliptic Filter	35
	3.7) Step to design parallel couple filter	36
	3.8) Basic parallel couple filter	38

IV	DEVELOPMENT OF PROJECT	
	4.1) Introduction	42
	4.2) Parallel-Coupled filter design	43
v	RESULT, ANALYSIS AND DISCUSSION	
	5.1) Introduction	53
	5.2) Fabrication result	54
	5.3) The effect of changing coupled line length	56
	5.4) The effect of changing coupled line width	58
	5.5) The effect of changing coupled line space	60
VI	CONCLUSION, FUTURE WORK	62
	AND SUGGESTION	
REFFRENCES		64
APPENDICES		66

LIST OF TABLES

TABLE	DESCRIPTION PAGE	GES
Table 2.1	Parameters of WCDMA	8
Table 2.2	Dielectric material	19
Table 3.1:	Summary of Filter Response Characteristics	36
Table 4.1	Specification filter	42
Table 4.2	Physical dimension of coupled line	50
Table 4.3	Optimize dimension of coupled line	50
Table 5.1	10% reduction of length, width and space	61
Table 5.2	10% increment of length, width and snace	61

LIST OF FIGURES

FIGURES	DESCRIPTION	PAGES
Figure 2.1	Frequency utilization with WCDMA.	9
Figure 2.2	Measurement timing relation between	
	WCDMA and GSM frame structures.	13
Figure 2.3	Packet transmission on the RACH	
	channel	14
Figure 2.4	Microstrip geometry	15
Figure 2.5	Graph frequency. Versus filter width	18
Figure 3.1	Low Pass filter response	27
Figure 3.2	High Pass filter response	27
Figure 3.3	Band Pass filter response	28
Figure 3.4	Band Stop filter response	28
Figure 3.5	Basic Low Pass Filter and its	
	Frequency Response	29
Figure 3.6	High Pass. Filter	29
Figure 3.7	Group Delay (Filter Characteristics)	33
Figure 3.8	Frequency Response of Various Filters	34
Figure 3.9	Frequency Response Comparison of 4th	
	Order Butterworth, Chebyschev and	35
	Ideal Response	
Figure 3.10	Basic structure of a coupled-line stage	40
Figure 3.11	Equivalent circuit for an open-end	
	microstrip line	40
Figure 3.12 :	Concept of Even/Odd Mode Current	
	Distribution in the Coupled Line	41

Figure 4.1	0.5dB filter characteristic	44
Figure 4.2	Low pass filter prototype	46
Figure 4.3	Bandpass filter prototype	46
Figure 4.4	Circuit for investigating coupled line	
	parameters	51
Figure 4.5	close up view of microstrip	51
Figure 4.6	Filter Layout with physical dimension (width, length, space, impedance)	52
Figure 5.1	Band pass filter response in simulation	53
Figure 5.2	Figure 5.2: S11 filter response at 1.95 GHz	54
Figure 5.3	maximum S11 filter response	55
Figure 5.4	S21 filter response at 1.95 GHz	55
Figure 5.5	maximum S21 filter response	56
Figure 5.6	10 % reduction of length	57
Figure 5.7	10 % increment of length	58
Figure 5.8	filter response with 10% reduction width	59
Figure 5.9	filter response with 10% increment width	59
Figure 5.10	filter response with 10% reduction space	60
Figure 5.11	filter response with 10% increment space	61

LIST OF APPENDIX

APPENDIX	DESCRIPTION	PAGES
A	matlab command	66
В	matlab command answer	68
C	filter layout (not actual size)	71
D	filter fabrication	72
E	ghant chart	73
F	recommendation paper work	74

CHAPTER I

INTRODUCTION

1.1) Introduction

Filters are some sort are essential to the operation of most common system. It is therefore set interest of anyone involved in electronic circuit design to have the ability to develop filter circuits capable of meeting a given set of specifications. Unfortunately, many in the electronics field are uncomfortable with the subject, whether due to a lack of familiarity with it, or a reluctance to grapple with the mathematics involved in a complex filter design.

Generally, filter is a frequency changed circuit who fail and pass the signal in some frequency range. Microwave frequency is in SHF (Super High Frequency) range who is in 900MHz till 300GHz. In this project, the operating frequency of the filter is from 1.92GHz till 1.98Ghz. This frequency is acceptable for WCDMA application and WCDMA has two modes characterized by the duplex method: FDD (frequency division duplex) and TDD (time ITXC- duplex), for operating with paired and unpaired bands, respectively. WCDMA has a flexible multirate transmission scheme that enables transmission of different types of services using different data rates and quality of service parameters. For example, channel coding type, interleaving depth, and data rate

can be varied achieve the desired quality of service. The simulation of this filter is use Microwave office 2000 to tested the filter and get expected result before make the fabrication.

Filter is a basic type for electronic circuit design. Filter specification who fail and pass the signal in some frequency range is a best solution for all the electronic system especially in microwave communication. Receiver, transmitter, microwave tester need filter to operates their system to filter the unstable signal. The specific filter application is ESM receiver, satellite communication, GSM, satellite live television system and microwave multiple FM.[10]

1.2) Bandpass microwave filter design propose

Bandpass filter for microwave frequency is the filter who use widely in communication system in world. This is because it can filter unknown signal and give the best signal to demodulation. The purpose of this project is to design a bandpass filter who can pass and barred signal in high frequency (GHz) so that it can use widely for communication system in future. For this project, microstrip filter is chosen because this filter have small size, light, and useful for high frequency.

To design this filter, one computer software, Microwave Office 2000 is need to calculate and determine the absolute value of filter parameter. Analysis of this simulation needed for equation analysis so the specification design of this filter, is exactly same with filter characteristic, microstrip line, and absolutely frequency for WCDMA.

1.3) Objective

The technology of filter for microwave frequency is become large everyday so that, this project is to simulate and design the bandpass filter for microwave application (WCDMA). The objective for this project is:

- > To design the microwave parallel coupled bandpass filter by using microstrip transmission line
- > To optimize the bandpass filter response by changing important parameter such as space, length and width of each resonator

1.4) Scope Of Work

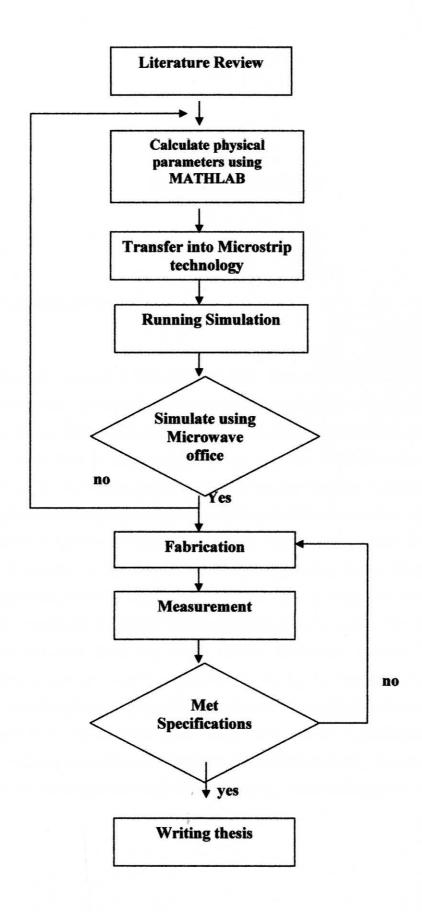
This project is design of wideband filter (WCDMA) and it means the research and attention is for bandpass filter who have center frequency 1.95Ghz, and the bandwidth is 60 MHz.

The scope of work is:

- Make a research of method of microstrip filter, microstrip transmission line and electromagnetic wave. It's important to find the value of filter dimension, dielectric material characteristic, impedance matching, and the filter can limit and have better frequency range.
- Develop an applicable equation to calculate microstrip filter dimension impedance to make prototype filter.

- Design in microwave office and MATLAB to make a simulation of the circuit filter
- · Optimize the filter when obtain an applicable circuit.
- Fabricate a band pass filter with center frequency 1.95GHz.It is applicable to WCDMA system.
- · Testing the fabricate filter result when all the fabricate process is finish.
- · Make a comparison of filter fabricate result and the filter simulation result.

1.5) Methodology


This project is started with make an early investigation and analysis for method to simulate and design the bandpass filter in microwave frequency. The reference is from books, journal, and from internet. Next, from the result of literature review and research, one microstrip bandpass filter is designed and the filter is simulate using microwave office 2000. After that, this filter is fabricated, tested and the result of measurement approximate with the simulation result.

Generally, this project is focus to 4 important step and the step is:

- For the 1st step, planning and literature review is important because both is how
 to find information and research from a lot of way. The book, journal, magazine,
 information from internet is important in this part.
- For the 2nd step, simulation, is to know and prove that information from 1st step is correct and test the simulation to obtain the exact value.
- For 3rd step, fabrication, measure / calculate is to make project layout and measured / calculate to know the expected result compared to simulation result.

For 4th step, when the project working, make a thesis of project although write all data and information from beginning the project until the project reach the objective.

Methodology (Flow Chart)

