DESIGN AND CHARACTERIZATION OF VERTICAL MOSFET

NUR ASIMA BINTI MOHAMMAD NASIR

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Computer Engineering)

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2012

HIST AND	U FAKULTI KEJ	J NIVERSTI T URUTERAAN BORANG PR	ΓΕΚΝΙΚΑL MALAYSIA MELAKA ELEKTRONIK DAN KEJURUTERAAN KOMPUTER PENGESAHAN STATUS LAPORAN OJEK SARJANA MUDA II
Tajuk Projek 💠	DESIGN A	AND CHARA	ACTERIZATION OF VERTICAL MOSFET
Sesi Pengajian	1 1	/ 1	2
Saya	NU	R ASIMA B (HU	INTI MOHAMMAD NASIR RUF BESAR)
mengaku membe syarat-syarat keg	enarkan Lapora gunaan seperti b	n Projek Sarja erikut:	na Muda ini disimpan di Perpustakaan dengan
1. Laporan ada	alah hakmilik U	niversiti Tekn	ikal Malaysia Melaka.
2. Perpustakaa	n dibenarkan m	embuat salina	n untuk tujuan pengajian sahaja.
 Perpustakaa institusi pen Sila tandaka 	n dibenarkan m gajian tinggi. m (√) :	embuat salina	n laporan ini sebagai bahan pertukaran antara
SU	LIT*	*(Mengano atau kepen dalam AK	dungi maklumat yang berdarjah keselamatan atingan Malaysia seperti yang termaktub di TA RAHSIA RASMI 1972)
TE	RHAD**	**(Mengar oleh organ	ndungi maklumat terhad yang telah ditentukan isasi/badan di mana penyelidikan dijalankan)
	DAK CRHAD		
			Disahkan oleh:
			De
(TANDAT.	ANGAN PENU	ILIS)	(COP DAN TANDY ANGAN PENYELLA)
×			ZUL ATFYLFAUZAN BIN MOHAMMED NAPIAH Lecturer Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka,
Tarikh:15	5 th JUNE 2012		Tarikh:

"I declare that this thesis is the result of my own work except for quotes as cited in the references."

Signature:Author: NUR ASIMA BINTI MOHAMMAD NASIRDate: 15th JUNE 2012

"I declare that I have been reading this thesis in view of our work is sufficient from the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering)."

Signature	:
Supervisor's Name	: ZUL ATFYI FAUZAN BIN MOHAMMED NAPIAH
Date	: 15 th JUNE 2012

Dedicated to my beloved family

To my father and mother

To my respected lecturer/supervisor

And to all my friends

For their support, advice, patience and understanding.

ACKNOWLEDGEMENT

Firstly, the author would like to express utmost gratitude to the project supervisor, Mr. Zul Atfyi Fauzan bin Mohammed Napiah for his guidance and supervision for the project. The motivations and advices that he gave have helped her to overcome the complexities and the challenges that were posed by the project. The comments on the project throughout the whole progress of final year project have also helped the author to set clear and right path to achieve the goal set.

Next, the author would like to extent the appreciation for the support offered by parents and family in inspiring her to pursue in this study. The support and encouragement showered has made her more motivated while facing the problems in the project. Therefore, the author hopes the completion of the study will bring honors and contribution to the family.

Last but not least, the author expresses appreciation to all her fellow friends for sharing knowledge together to complete the project. Indeed, the experience has motivated her to carry out the project patiently and cautiously.

vi

ABSTRACT

Vertical MOSFET is a device structure that considered overcoming the Short Channel Effects (SCEs) in nanometer scale device structure. In this research, the comparison between Drain-On-Top (DOT) and Source-On-Top (SOT) of Double Gate Vertical MOSFET were developed by using the SILVACO TCAD tools for several channel length (L_g) of 50, 70, 90, 130, and 180 nm respectively. The performance of the Double Gate Vertical MOSFET was analyzed by using process and device simulation which are DevEdit, ATHENA and ATLAS tools respectively. The electrical characteristics for proposed devices have been analyzed based on different channel length and the results are as shown in the I-V curve. The physical parameters extracted from the I-V curve are the threshold voltage (V_T), leakage current (I_{OFF}), active current (I_{ON}), Drain Induced Barrier Lowering (DIBL) and subthreshold swing. From the analysis, Drain-On-Top structure is more practically better compared to Source-On-Top due to their electrical characteristic.

ABSTRAK

MOSFET Menegak adalah satu struktur peranti elektronik yang dipertimbangkan untuk mengatasi Kesan Saluran Pendek (SCEs) dalam struktur peranti berskala nanometer. Dalam kajian ini, perbandingan antara Saliran-Di-Atas (DOT) dan Sumber-Di-Atas (SOT) bagi MOSFET Menegak Get Duaan dilakukan dengan menggunakan perisian SILVACO TCAD untuk beberapa panjang saluran (L_g) iaitu 50, 70, 90, 130, dan 180 nm masing-masing. Prestasi MOSFET Menegak Get Duaan telah dianalisa dengan menggunakan simulasi proses dan peranti iaitu DevEdit, ATHENA dan ATLAS masing-masing. Ciri-ciri elektrikal untuk peranti yang diusulkan telah dikaji berdasarkan panjang saluran yang berbeza dan hasil kajian adalah seperti yang ditunjukkan di dalam graf arus-voltan. Parameter fizikal yang diekstrak dari graf arus-voltan ambang (V_T), arus bocor (I_{OFF}), arus aktif (I_{ON}), Drain Induced Barrier Lowering (DIBL) dan ayunan separa ambang. Daripada semua analisa yang telah dilakukan, struktur Saliran-Di-Atas terbukti lebih praktikal jika dibandingkan dengan struktur Sumber-Di-Atas berdasarkan ciri-ciri elektrikal kedua-dua peranti.

TABLE OF CONTENT

CHAPTER TITLE

PROJECT TITLE	i
STATUS CONFIRMATION REPORT FORM	ii
AUTHOR'S DECLARATION	iii
SUPERVISOR'S DECLARATION	iv
DEDICATION	v
ACKNOWLEDGMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENT	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDIX	xvii

1 INTRODUCTION

1.1	BACKGROUND	1
1.2	PROBLEM STATEMENT	2
1.3	OBJECTIVES	3
1.4	SCOPE OF PROJECT	3
	1.4.1 Introduction to TCAD	4

	1.4.2	DevEdit	4
	1.4.3	ATHENA	4
	1.4.4	ATLAS	4
1.5	METH	łODOLOGY	5
1.6	PROJ	ECT STRUCTURE OVERVIEW	6

2 LITERATURE REVIEW

2.1	PLAN	AR MOSFET	7
2.2	VERT	TICAL MOSFET	9
2.3	DOUI	BLE GATE VERTICAL MOSFET	10
2.4	SHOR	T CHANNEL EFFECTS (SCEs)	12
	2.4.1	Threshold Voltage (V _T)	12
	2.4.2	Leakage Current (I _{OFF})	13
	2.4.3	Active Current (I _{ON})	14
	2.4.4	Drain Induced Barrier Lowering (DIBL)	14
	2.4.5	Sub-threshold Swing	15

3 METHODOLOGY

3.1	SUMMARY OF PROJECT FLOWS	16
3.2	INTRODUCTION TO TCAD TOOLS	18
	3.2.1 SILVACO TCAD Tools	19
3.3	CREATING DOUBLE GATE VERTICAL	
	MOSFET STRUCTURE USING DEVEDIT	20
3.4	CREATING DOUBLE GATE VERTICAL	41
	MOSFET STRUCTURE USING ATHENA	71
3.5	DEVICE SIMULATION USING ATLAS	51

4 **RESULT AND DISCUSSIONS**

4.1	DOUBLE GATE VERTICAL MOSFET		
	STRUCTURE BY USING DEVEDIT		
	411	Comparison of Drain-On-Top (DOT)	61
	4.1.1	structure for various channel length	04
	4.1.2	Comparison of Drain-On-Top (DOT) and	67
		Source-On-Top (SOT) structure	07

5 CONCLUSION AND RECOMMENDATIONS

5.1	CONCLUSIONS	70
5.2	RECOMMENDATIONS	71

REFERENCES	72)

APPENDIX A	74
APPENDIX B	76
APPENDIX C	79

LIST OF TABLES

NO.	TITLE	PAGE
4 1	The threshold voltage of DOT structure for various channel	65
4.1	length	03
4.2	The threshold voltage of DOT and SOT structure	68

LIST OF FIGURES

PAGE

1.1	Flow Chart of the Project	6
2.1	Planar MOSFET	8
2.2	Vertical MOSFET	9
2.3	Drain-On-Top Double Gate Vertical MOSFET	10
2.4	Source-On-Top Double Gate Vertical MOSFET	11
2.5	$I_D - V_G$ curve	13
2.6	I _{OFF} versus L _g curve	13
2.7	Output characteristic, $\text{Log } I_D - V_G$ curve for DIBL	14
28	Output characteristic, $\text{Log } I_D - V_G$ curve for sub-threshold	
2.0	swing	15
3.1	Methodology of the Project	18
3.2	Resize the Work Area	20
3.3	Resized Area	21
3.4	Drawing the Base Region	22
3.5	Selecting "Set Base Impurity"	23
3.6	The Silicon Region	23
3.7	Drawing the Silicon Oxide Region	24
3.8	Silicon Oxide Region	25

3.9	Adding Source Electrode	26	
3.10	Setting of Doping Type of the Source	27	
3.11	Source Electrode Region	27	
3.12	Adding Drain Electrode	28	
3.13	Setting Doping Type of the Drain	29	
3.14	Drain Electrode Region	29	
3.15	Substrate Electrode Panel	30	
3.16	Adding Gate Electrode	31	
3.17	Setting Doping Type of the Gate		
3.18	The Polysilicon Gate Region	32	
3.19	Add Impurity Panel for Source		
3.20	User Added Impurity	34	
3.21	Add Impurity Panel for Drain	35	
3.22	User Added Impurity	36	
3.23	Net Doping Example	37	
3.24	Mesh Example	38	
3.25	Double Gate Vertical MOSFET Structure	39	
3.26	The Double Gate Vertical Structure with Mesh	40	
3.27	The Double Gate Vertical Structure with Net Doping	40	
	The Double Gate Vertical Structure with both Mesh and Net Doping		
3.28			
2.20	Creating Non-Uniform Grid in 0.39µm by 0.67µm Simulation Area		
3.29			
3.30	Initial Triangular Grid	43	
3.31	Codes for Etching	43	
3.32	Silicon Pillar for Vertical MOSFET	44	
3.33	Codes for gate oxidation and threshold voltage adjust implant	44	
2.24	Contour Plot of the Boron doping profile after Ion Implantation		
3.34			
3.35	Codes to Deposit the Polysilicon	45	
3.36	Conformal Deposition of Polysilicon Layer	46	
3.37	Codes to etching, performing oxidation and doping of the	47	

Polysilicon

3.38	Net Doping contour plot after Polysilicon implantation step	47	
2 20	Codes for spacer oxide deposition and source/drain		
5.59	implantation	48	
3.40	Source/drain implantation	48	
3.41	Codes for handling the metallization part	49	
3.42	Half of the Double Gate Vertical MOSFET	50	
3.43	Codes for mirror the structure and declare the electrodes	50	
3.44	Full structure of DOT Double Gate Vertical MOSFET	51	
3.45	Codes to load the .str file from DevEdit or ATHENA	52	
3.46	Code for the recombination model	52	
2 47	Codes for specifying the contact characteristics and interface	52	
5.47	properties		
3.48	Codes for the method statement	53	
3.49	Codes to obtain $I_D - V_G$ curve	54	
3.50	$I_D - V_G$ curve for $V_D = 0.1$ V	54	
3.51	Codes to obtain $I_D - V_D$ curve	55	
3.52	$I_D - V_D$ curve	55	
4.1	Drain-On-Top Double Gate Vertical MOSFET from DevEdit	57	
4.2	Arsenic and Boron concentration for Drain-On-Top structure	58	
4.2	Source-On-Top Double Gate Vertical MOSFET structure from DevEdit		
4.5			
4.4	Arsenic and Boron concentration for Source-On-Top structure	60	
4.5	The threshold voltage for 50nm DOT structure	61	
4.6	The leakage current and active current for 50nm DOT structure	62	
4.7	The DIBL for 50nm DOT structure	63	
4.8	The sub-threshold swing for 50nm DOT structure	64	
4.9	$I_D - V_G$ curve for various channel length	64	
4.10	Log $I_D - V_G$ curve for various channel length	66	
4.11	$I_D - V_D$ curve for various channel length	67	
4.12	$I_D - V_G$ curve for DOT and SOT structure	68	
4.13	$Log I_D - V_G$ curve for DOT and SOT structure	69	

LIST OF ABBREVIATIONS

AC	-	Alternating Current
DC	-	Direct Current
DIBL	-	Drain Induced Barrier Lowering
DOT	-	Drain-On-Top
FET	-	Field Effect Transistor
IC	-	Integrated Circuit
I _D	-	Drain Current
I _{OFF}	-	Leakage Current
I _{ON}	-	Active Current
Lg	-	Channel Length
MOSFET	-	Metal-Oxide Semiconductor Field Effect Transistor
N_{sub}	-	Substrate Thickness
SCEs	-	Short Channel Effects
SOT	-	Source-On-Top
TCAD	-	Technology Computer Aided Design
t _{ox}	-	Oxide Thickness
V _{DS}	-	Drain-Source Voltage
V _{GS}	-	Gate-Source Voltage
V _T	-	Threshold Voltage
VWF	-	Virtual Wafer Fab

LIST OF APPENDIX

NO.	TITLE	PAGE
А	Example For Analyzing Drain-On-Top Structure From	74
В	Example For Creating Drain-On-Top Structure Using	76
С	Example For Analyzing Drain-On-Top Structure From ATHENA	79

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

The Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is largely regarded as a popular device and is extensively used in digital circuits, microprocessors, memory circuit, and other logic applications of many kinds. This is due to the MOSFET ability to act as an efficient switch that practically consumes no current at the gate and the channel conductivity dependents only on the potentials at the gate. The relatively small size of the MOSFET causes thousands of devices that can be fabricated into a single integrated circuit design is another advantage to the electronic industry [1].

It is impossible to be engaged in the semiconductor industry without encountering frequent references to Moore's Law. In 1965, Gordon Moore, cofounder and chairman Emeritus of Intel Corporation, made the observation that the number of transistors per integrated circuit (IC) were growing at an exponential rate and predicted that this trend would continue. Since that time, the industry has an accomplished the exceptional feat of producing semiconductor devices with twice as many transistors as the prior generation every 18-24 months. Consumers and businesses alike have reaped tremendous benefits from the electronics technology, and semiconductors is the heart of it all [4].

Nowadays, research is focused on obtaining higher speeds, low power consumption, and low cost devices. Marketing leaders are very keen on inventing a new generation of MOSFET technologies to continue their dominating position [4]. Due to physical device fabrication limitations and short channel effects, the future of MOSFET relies on the evaluation of new techniques like Vertical MOSFET and Double Gate MOSFET.

1.2 Problem Statement

An integrated circuit (IC) is a minuscule electronic circuit that consists of active and passive components as well as interconnection. These components include transistor, diode, capacitor, and resistor. The IC is based mainly on the transistor. The transistor, a semiconductor device was developed as an alternative to the old vacuum tube.

Since the transistor could be made much smaller, it was much more convenient to use. As a result, the transistor became the main amplifying device in

2

almost all electronic equipment. The recent development of MOSFET has reached the progress that the channel length goes shorter into nanometer scale.

While the MOSFET undergoes scaling down of the size in order to improve integrated circuit performance such as speed, power consumption and packing density, a number of challenges need to be overcome.

1.3 Objectives

The objectives of this project are:

- (i) To be familiarize with SILVACO TCAD tools.
- (ii) To design and characterize the Vertical MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
- (iii) To compare the performance of Vertical MOSFET and other relevant device structure.

1.4 Scope of Project

The scope of this project presents an overview of the performances on Double Gate Vertical MOSFET by using process and device simulation using DevEdit, ATHENA and ATLAS tools respectively. The proposed device structures were designed by using DevEdit and ATHENA tools.

1.4.1 Introduction to TCAD

TCAD stands for Technology Computer Aided Design, which is not that selfexplanatory. What it really refers to is computer programs able to simulate either the workings of a semiconductor device (device simulation) or the fabrication process of a semiconductor device (process simulation). Often the result of a process simulation, which is called a "mesh" or "grid", is fed into a device simulator to evaluate the performance or the behavior of the device that has been "virtually fabricated". Simulations are very inexpensive and fast compared to actual prototype fabrication. They are also an excellent tool to understand semiconductor physics.

1.4.1 DevEdit

DevEdit can be used to either create a device from scratch or to re-mesh or edit an existing device. DevEdit creates standard SILVACO structures that are easily integrated into SILVACO 2D or 3D simulators and other support tools.

1.4.2 ATHENA

ATHENA provides a convenient platform for simulating processes used in semiconductor industry such as ion implantation, diffusion, oxidation, physical etching and deposition, lithography, stress formation and silicidation.

1.4.3 ATLAS

ATLAS enables device technology engineers to simulate the electrical, optical and thermal behavior of semiconductor devices. ATLAS provides a physics-

based, easy to use, modular and extensible platform to analyze DC, AC and time domain responses for all semiconductor based technologies in 2 and 3 dimensions.

1.5 Methodology

Figure 1.1: Flow Chart of the Project

5

1.6 Project Structure Overview

This thesis consists of five chapters. The first chapter provides an introduction to this project. This includes the objectives and importance of this project. The second chapter contains theories and information about other relevant researchers conducted by research institutes and universities around the world.

The research activities and methods employed in this project will be discussed in detail in Chapter 3. This chapter shows the flow of this project from the very beginning of the data collection until the acceptable results. It also introduced the TCAD tools used in this project. Step by step explanations on the development of the Vertical MOSFET are provided for extra information and knowledge.

Chapter four will discuss about the result obtained from the process simulation using ATLAS tools. The data and results from the process are analyzed and discussed in this chapter. The effect of the tested parameters is discussed and opinions are brought forward in this chapter. Comparison between the Drain-On-Top (DOT) and Source-On-Top (SOT) structure are also discussed.

Finally, the last chapter will be the conclusion and incorporates the overview of the results and recommendation for this project. This chapter compares the results analysis with the objectives of this research in order to determine the achievement of this research. **CHAPTER 2**

LITERATURE REVIEW

This chapter provides an introduction to MOSFET inclusive of an overall view of the past and current technology revolving around it. Backgrounds of the planar MOSFET to the novel device of Double Gate Vertical MOSFET were illustrated in this chapter. The previous research paper that had been selected to be the key papers was also discussed in this chapter.

2.1 Planar MOSFET

The conventional MOSFET or as known as the normal planar MOSFET has a source and a drain area divided by the channel area as shown in Figure 2.1. Its contacts are symmetric [3].