A PROTOTYPE OF AN INTELLIGENT LIGHTING CONTROL SYSTEM POWERED VIA PHOTOVOLTAIC TECHNOLOGIES

BOON KAH SENG

This Report Is Submitted In Partial Fulfillment of the Requirements for the Bachelor Degree of Electronic Engineering (Telecommunication Electronics) With Honors

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2012**

HALAYSIA HRLANA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN				
			IKUJ	LK SF	NJANA MUDA II
TajukProjek	<u> </u>	<u>OTYPE O</u> I POWER	F AN I ED VI4	NTEL A PHO	LIGENT LIGHTING CONTROL TOVOLTAIC TECHNOLOGIES
SesiPengajian	: 1	1 /	1	2	
Mengaku memben kegunaan seperti b 1. Laporan adala 2. Perpustakaan 3. Perpustakaan pengajian ting 4. Sila tandakan SUI	arkan Laporan P erikut: ah hakmilik Univ dibenarkan mem dibenarkan mem ggi. (√): LIT*	rojek Sarja ersiti Tekn ibuat salina ibuat salina kut salina kepent RAHS **(Me organis	na Mud ikal Ma in untuk in lapora ingan M IA RAS ngandur sasi/bad	a ini d ilaysia tujuar an ini s gi mak falaysi MI 19 ngi ma an di m	isimpan di Perpustakaan dengan syarat-syarat Melaka. n pengajian sahaja. sebagai bahan pertukaran antara institusi lumat yang berdarjah keselamatan atau a seperti yang termaktub di dalam AKTA 72) klumat terhad yang telah ditentukan oleh nana penyelidikan dijalankan)
V TII)AK TERHAD				
					Disahkan oleh:
(TANDA	ATANGAN PEN	ULIS)		-(0	OP DAN TANDATANGAN PENYELIA)
Tarikh: 15 JUN	2012			Та	rikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the reference"

Signature	:
Author	: BOON KAH SENG
Date	: JUNE 2012

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms scope and quality the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honors"

Signature	:	
Name	: Engr. Ranjit Singh Al Sarban Singh	
	Miss Siti Aisyah bte Anas	
Date	: JUNE 2012	

Specially dedicated to

My loving parent, Seah Mui Hiang; My lively siblings, Boon Shue Ying

ACKNOWLEDGEMENTS

First and foremost, I would like to convey my sincere appreciation to my supervisor Engr. Ranjit Singh Al Sarban Singh and Miss Siti Aisyah bte Anas for their patience, concern, invaluable guidance and also encouragement throughout the preparation of this thesis.

Besides that, I would like to dedicated my deepest thank to my beloved family members for their moral and financial support while completing my tertiary education. Thanks to all the lecturers, friends, and fellow course mate for their cooperation and sharing.

Last but not least, my thanks to the librarians of Universiti Teknikal Malaysia Melaka for their valuable resources providing in completing my thesis, also, thanks to the technicians of the PSM lab of FKEKK, UTeM. I am very appreciative for their co-operative while I was working in the laboratory.

Thank You.

ABSTRACT

Nowadays, the photovoltaic technology is becoming helpful technique and has a major new technology in green technology. Photovoltaic technology was used not only because it is a renewable energy, but it also gives us a lot of benefits. First of all, it technology bring zero impact to environment. Besides this benefit, photovoltaic system also reduces our living burden or increases our saving. For the overview of this system is combination of photovoltaic system and intelligent control system. The intelligent system need is because of users always easy to forget switch off the lamp can affect the living burden of the users and the power consumption will increased. The significance of this project is the environmental impact getting less. Besides that, this project will create an economical and cost effective system for users.

vii

ABSTRAK

Pada masa kini, teknologi fotovoltaik menjadi teknik membantu dan mempunyai teknologi baru yang utama dalam teknologu hijua. Teknologi fotovoltaik telah digunakan bukan sahaja kerean ia adalah tenaga boeh diperbaharui, tetapi ia juag memberikan kita banyak manfaat. Pertama, teknologi fotovoltaik membawa sifar kesan kepada alam sekitar. Selain manfaat ini, teknologi fotovoltaik juga mengurangkan beban kehidupan kita atau meningkatkan penjimatan kami. Sebagai gambaran seluruhan bagi projek ini adalag gabungan sistem fotovoltaik dan sistem kawalan yang pintar. Keperluan sistem kawalan yang pintar adalah kerana pengguna sentiasa mudah lupa matikan lampu yang membawa akibatnya adalah menambah beban hidup pengguna and penggunaan kuasa akan meningkat. Kepentingan projek ini adalah kesan alam sekitar yang semakin kurang. Selain itu, projek ini akan mewujudkan satu sistem ekonomi dan kos efektif untuk pengguna.

CONTENTS

CHAPTER	TITI	LE	PAGES	
	PRO	JECT TITLE	i	
	STA	TUS REPORT FORM	ii	
	STU	DENT DECLARATION	iii	
	SUP	SUPERVISOR DECLARATION		
	DED	DEDICATION		
	ACK	NOWLEDGEMENT	vi	
	ABS	TRACT	vii	
	ABS	BSTRAK		
	CONTENT		ix	
	LIST	COF TABLE	xiii	
	LIST	COF FIGURE	xiv	
	LIST	COF APPENDIX	xvi	
Ι	INTI	RODUCTION		
	1.1	Overview	1	
	1.2	Motivation for Research	2	
	1.3	Objectives	2	
	1.4	Problem Statement	2	
	1.5	Scope of Project	3	
	1.6	Thesis Outline	6	

II LITERATURE REVIEW

2.1	Automatic Room Light Intensity Detection and		
	Control Using a Microprocessor and Light Sensors	7	
2.2	A Wireless Power Outlet System for Smart Homes	10	
2.3	Energy Saving by Automatic Control of Power in		
	Simple Home Appliances	12	
2.4	DC/AC Pure Sine Wave Inverter	14	
2.5	A Photovoltaic System in a Residential Building:		
	Environmental and Economic Optimization Analysi	.S	17

III METHODOLOGY

Overview of Components	18
Voltage Regulator	18
Capacitor	19
Resistor	20
Ceramic Resonator	21
Microcontroller (PIC16F877A)	22
Relay	23
Transistor	24
Variable Resistor	25
Liquid Crystal Display (LCD)	25
Diode	27
Solar panel	28
Battery	29
Solar Charge Controller	29
Compact Fluorescent Lamp	30
Transformer	31
Infrared Reflectance Sensor	31
Overview of Software	32
Proteus Professional 7	32
CCS C Compiler	33
	Overview of Components Voltage Regulator Capacitor Resistor Ceramic Resonator Microcontroller (PIC16F877A) Relay Transistor Variable Resistor Liquid Crystal Display (LCD) Diode Solar panel Battery Solar Charge Controller Compact Fluorescent Lamp Transformer Infrared Reflectance Sensor Overview of Software Proteus Professional 7 CCS C Compiler

3.3	Battery Sizing	34
3.4	Solar panel Sizing	35

IV RESULT

4.1	Simulation	36
4.1.1	Control Circuit	36
4.1.2	Inverter	37
4.2	Prototype	38
4.2.1	Control Circuit	38
4.2.2	Inverter	40
4.2.2.1	1 st design	40
4.2.2.2	2 2 nd design	40
4.3.2.3	^{3 3rd} design	41
4.3.2.4	4 th design	41
4.3	Printed Circuit Board	42
4.3.1	Control Circuit	42
4.3.2	Inverter	44
4.4	End Product	45
4.4.1	Measurement	48

V FUTURE RECOMMENDATION

5.1	Control circuit	50
5.2	Inverter	51

VI DISCUSSION AND CONCLUSION

6.1	Discussions	52
6.2	Conclusion	53

xi

REFERENCES

54

56

APPENDICES

C Universiti Teknikal Malaysia Melaka

LIST OF TABLE

NO	TITLE	PAGES
2.1	Average power consumption of the HLCM	8
3.1	Features and Differences between Aluminum Electrolytic	
	Capacitor and Tantalum Electrolytic Capacitor	19
3.2	Pin Description of 16×2 LCD Screen	26
4.1	Tested Result of Prototype of Control Circuit	38
4.2	Measurement result of 1 st inverter circuit	40
4.3	Measurement result of 2 nd inverter circuit	41
4.4	Measurement result of 3 rd inverter circuit	41
4.5	Measurement result of 4 th inverter circuit	42
4.6	Tested result of PCB Control circuit	42
4.7	Measurement Result of PCB Inverter Circuit	44
4.8	Operating and Recharging Hours	48
4.9	Tested Result for End Product	48

LIST OF FIGURE

NO	TITLE	PAGES
2.1	Comparison between Manually Switching and Automatic Switching	9
2.2	Home Light Control Module	9
2.3	Structural decomposition of the power outlet module	11
2.4	Proactive Light Experiment	11
2.5	Block Diagram of System	13
2.6(a)	Lamp turns on	13
2.6(b)	Lamp turns off	13
2.6(c)	Lamp turns on	14
2.6(d)	Lamp turns off	14
2.7	Block Diagram of Inverter	15
2.8	Sine wave Generator	15
2.9	Triangular Carrier Wave Generator	16
2.10	H-Bridge with MOSFET	16
2.11	Output of Inverter	16
3.1	Voltage Regulator LM78XX series	19
3.2	Aluminum electrolytic capacitor	20
3.3	Resistor Color Code Guide	21
3.4	Ceramic Resonator	22
3.5	PIC16F877A 40 pins layout	23

3.6	5Vdc Relay	24
3.7	Common Case Style of Transistor	24
3.8	Variable resistor	25
3.9	16×2 LCD Screen with Blue Backlight	26
3.10	Rectifier Diode	27
3.11	Zener Diode	27
3.12	Solar panel with 12V, 20W	28
3.13	Battery with 12V, 12AH	29
3.14	Solar Charge Controller	30
3.15	Compact Fluorescent Lamp	30
3.16	Transformer	31
3.17	Infrared Reflectance Sensor	32
3.18	Proteus Professional 7	33
3.19	CCS C Compiler	34
4.1	Top view of PCB Control Circuit	44
4.2	Top View of PCB Inverter Circuit	45
4.3	Silicon Box	46
4.4	The Circuit inside the Silicon Box	46
4.5	End Product	47

LIST OF APPENDIX

NO	TITLE	PAGES
А	Data Sheet of transistor 2N3055	56
В	Data Sheet of transistor TIP35	60
С	Data Sheet of transistor D313	65

CHAPTER 1

INTRODUCTION

1.1 Overview

As the national electricity tariff increases, science and technology have assisted the development of control system technology. Development of the control technology have affected every aspect of people's lives, changed the habits of people, and improved the quality of people's life. Intelligent lighting control system refers to use auxiliary technologies of some computers in the room to carry out the control automatically for power line lighting, it can reach the particular lighting effect in special space and time, which can optimize the way of people's life, help people to arrange their time effectively, and even save money for a variety of energy costs. In this project, three research experiments will be conducted to compare this research work with conventional lighting system. Firstly, conventional lighting system structure will be modeled and studied to analyze the energy consumption. Secondly, modeling of an intelligent lighting system with the conventional lighting system and lastly, modeling the intelligent lighting system with photovoltaic (PV) system. First two models will be analyzed to record the energy consumption and based on the energy consumption the third model will be developed using the photovoltaic (PV) system. A sample of lecture room time table will be referred as a guidance to analyze the energy consumption.

1.2 Motivation for Research

As we known, lives of city dwellers mostly are in hurry and filled with stress. Most of time, they will busy with their work or job to make sure they can survive in this city. Therefore, some of they will ignore or forget some trivial thing such as switch off the lamp in the room. There are two problem will come out when the city dweller forget turn off the lamp; first is electricity bill of the city dweller will increase and directly increase the living burden of the city dweller. Second, the city dweller wasting energy and increase the energy consumption. To overcome the problems, we need an intelligent control system to help users switch off the lamp automatically; we also need a renewable energy which photovoltaic technology to reduce the power consumption and indirectly reduce the environmental impact.

1.3 Objectives

The main objectives of the project are:

- To design and develop an Intelligent Lighting Control System Powered Via Photovoltaic Technology.
- 2. To study about all the existing automated lighting system.
- 3. To model photovoltaic system integration with low power AC appliances.
- 4. To study the characteristic of off-the-shelf sensors.

1.4 Problem Statement

In recent years, energy consumption and global warming have become the major problem which the whole world has to confront. The largest part of the energy consumption in the world is not industry utilization but it is home energy consumption. In general, energy consumption of the lamps or lighting in a typical home cannot be ignored. At the same time, the wastage of electric for the traditional home's lamps or lighting is very high and increasing [1]. This situation occurs because of traditional lamps or lighting is very inefficient in converting electricity

energy to light (95% energy converted to heat) [2]. Besides that, sometimes user will forget to switch off the lighting even though it maybe just for several minutes, that will also cause electric energy wasting [3]. Based on the problem statement, a solution is needed to overcome the increasing electric energy consumption. Hence, in this project an intelligent lighting system powered via photovoltaic technology is design and develop to fulfill the requirement to reduce the electric energy consumption and moderate the global warming issue.

1.5 Scope of Project

The scope of this project is to develop the intelligent lighting system for entrance A and entrance B and powered via photovoltaic technology. This project will divide to two main systems which is power supply system and intelligent lighting system.

For the power supply system, the $12V_{DC}$ to $240V_{AC}$ inverter had designed to convert the 12 direct current voltage from battery to 240 alternative current and supply it to intelligent lighting system. For the intelligent lighting system, the infrared reflectance sensor (or called as infrared proximity switch module) had used to detect human pass by the door.

This project is involved software and hardware developments. For software development, Proteus and CCS C Compiler is used to design, simulation and write programming coding for Peripheral interface Controller (PIC). For the hardware development, the prototype for door will make by using polyvinyl chloride (PVC).

Flow Chart of Photovoltaic System Connected to Control System

Flow chart of the Program of Intelligent Lighting Control System

1.6 Thesis Outline

This report is presented into five chapters. The introduction of the project and the objective of the project are outlined in this chapter. Chapter 2 describes about the theory used, background and basic information of this project.

Chapter 3 will be discussing the methodology of this project and implementation of the software and hardware development. The entire circuits had used will shown in this chapter. In chapter 4 will shown the entire simulation result and system tested result. Besides that, this chapter also will include some discussion for this project. Conclusion and recommendations for the entire project are described in Chapter 5.

6

CHAPTER II

LITERATURE REVIEW

2.1 Automatic Room Light Intensity Detection and Control Using a Microprocessor and Light Sensors

Basically, this paper is proposing a design used a microcontroller and light sensors to automatically detect the intensity of light in the room and control the lighting system of that room. According the author design, a Home Light Control Module (HLCM) is consisting of pyroelectric infrared (PIR) sensor circuit, the light sensor circuit, the microprocessor and the RF module, and this module will install in every light fixture of a family. The PIR sensor circuit needed to detect the presence of human in the detection area. When human in the detection area, the variation of temperature will produce and detected by PIR sensor. Once the PIR sensor detected the variation of temperature, an output will send to microprocessor with several decades mile-voltage. Since output signal from sensor in weak, an amplifier needed to amplify the output to trigger the microprocessor. The main function of light sensor circuit is detected in the intensity of light in the particular room and sends the detected result to microprocessor for further process. The RF module used to communicate between each HLCM in order to pre-control the light in room near to users and support the light intensity to make sure the lowest level light intensity can be achieved. The microprocessor in this module has 3 main functions:

1. Set the sufficient intensity of light for particular room

- 2. Analyze the output from light sensor circuit to determine either the intensity of light in the room match the lowest level light intensity set by the microprocessor
- 3. Analyze the necessary to turn on or off the lamp according the output from PIR sensor circuit and light sensor circuit

Since the idea from author is help users to save energy, therefore the power consumption of HLCM must be low. From the journal, author listed the power consumption of the 4 circuit and the total power consumption in Table 2.1proved the HLCM is low power consumption.

Item	Average current	Operation	Average Power
	(mA)	Voltage (V)	consumption (W)
RF	33	3	0.099
Microprocessor	36	5	0.18
Relay	68	5	0.34
PIR Circuit	35	5	0.175
Light sensor	38	5	0.19
Circuit			
Total	210	5 or 3	0.984

Table 2.1: Average power consumption of the HLCM

Besides that, authors also done an experiment and proved manually switch on/off the light is consume more power compare with the light is switched by HLCM.