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ABSTRACT 

 

 

Polypropylene (PP) was chosen as raw material in this study due to low cost and 

good mechanical properties. This factor encourages many researchers in many fields of 

study to choose PP as the material. In the other side, PLA has advantage in degradability 

because it is classified as a biodegradable polymer under specific condition. The 

objective of this study is to produce the PP/PLA polymer blends. The purpose of 

producing this polymer blends is to investigate the mechanical properties of PP/PLA 

polymer blends by running several mechanical tests such as tensile, 3 points bending and 

Charpy impact test. In this study, the specimens of PP/PLA polymer blends with 

difference weight ratio were produced and the optimum weight ratio will be evaluated in 

each mechanical test that had been done. Other than that, biodegradable test was run to 

investigate the biodegradability of polymer blends and FTIR test to investigate the 

bonding of new polymer blends. In this study, the specimens of the PP/PLA polymer 

blends with the different weight percentage – PLA 5 wt%, 10 wt% and 15 wt % 

produced by melting compound process. From the tensile test, PP/PLA 5 wt% had 

higher tensile strength but same Young’s modulus with other blends. For flexural 

properties, PP/PLA 10 wt% had highest flexural strength and modulus compared to Neat 

PP and PP/PLA polymer blends. For impact strength, the PP/PLA blends had low impact 

strength compared to Neat PP. For biodegradable test, PP/PLA polymer blends showed 

that the blends had ability to biodegrade in specific condition for 8 weeks and PP/PLA 

10 wt% showed the highest percentage of weight reduction which was 1.3%. Finally, 

from the FTIR test, the chemical bonding of PP/PLA polymer blends showed that the 

blends had combination of chemical bonding of PP and PLA.   
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ABSTRAK 

 

 

PP dipilih di dalam kajian ini kerana telah digunakan secara meluas di dalam 

pelbagai bidang dan harganya yang rendah berbanding polimer lain sehingga telah 

menarik minat banyak syarikat menggunakannya sebagai bahan mentah dalam 

penghasilan produk mereka. Jika dilihat dari sudut berbeza, PLA pula mempunyai 

kebolehan untuk terurai atau degradasi kerana PLA telah dikenalpasti sebagai polimer 

biodegradasi sekiranya berada di dalam keadaan yang sesuai. Di dalam penyelidikan ini, 

bahan uji kaji iaitu PP dan PLA polimer akan disatukan bersama dan akan dihasilkan 

dengan  nisbah berat yang berbeza antara PP dan PLA- 5 wt%, 10 wt% dan 15 wt%, dan 

seterusnya nisbah berat optimum akan dinilai berdasarkan setiap keputusan ujian 

mekanikal yang telah dijalankan. Ujian mekanikal yang dijalankan bertujuan untuk 

mengkaji sifat-sifat mekanik dengan menjalankan ujian seperti ujian ketegangan, 

kelenturan, hentaman Charpy dan kekerasan. Daripada kajian ini, PP/PLA 5 wt% 

mempunyai kekuatan tegangan yang paling tinggi tetapi nilai modulus Young yang sama 

dengan komposis lain. Untuk ujian lenturan, PP/PLA 10 wt% mempunyai nilai 

ketagangan lenturan yang paling tinggi berbanding komposisi lain. Daripada kajian ini. 

Kebolehan biodegradasi oleh PLA telah menyebabkan campuran polimer PP/PLA juga 

mewarisi sifat biodegradasinya. Kaedah “Fourier Transform Infrared Radiation” (FTIR)  

dijalankan untuk mengkaji keterlarutan campuran yg telah dihasilan. Istilah keterlarut 

campuran adalah penting untuk menganalpasti jenis ikatan kimia polimer. Jenis ikatan 

kimia ini akan memberi kesan kepada sifat-sifat mekanik.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND  

 

1.1.1 POLYMER  

Polymer is a particular class of macro-molecules that consist of repeated 

chemical units, also called monomer, joined end to end, or possible in more complicated 

ways by covalent bonds to form a chain molecule. In a simple word, polymer means a 

chain of monomers repeated and linked with each other to produce a long chain. If there 

are only one monomer repeated in a chain, it is called homopolymer but copolymer 

occur when more than one monomer present. Carbon and hydrogen are the most 

common atoms in monomer but other atom may be present such as oxygen, nitrogen, 

and silicon. Some of the common polymers are polyethylene (PE), polystyrene (PS) and 

polypropylene (PP) [1]. Polymers also has many possible classification which are the 

type of polymerization process used to process them, structure of the polymer whether it 

is linear, branched or network polymer, and also based on their properties whether it is 

thermoplastics or thermosetting [2]. 

Figure 1.1 below represents the type of molecular structure of polymers. If 

monomers linked end to end in single chain, it called linear polymer. Polyethylene is an 

example of linear polymer. Branched polymer has molecular structure where the side- 
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branch chains connected to the main chain. In cross-linked polymer, a few linear chains 

are joined together at various positions by covalent bonds such as rubber. The term of 

network polymer is when multifunctional monomers that have three or more active 

covalent bands form three dimensional networks and epoxies belong to this group [3]. 

 

Figure 1.1 Schematic illustration of molecular structure of polymers (a) linear, (b) 

branched, (c) cross-linked and (d) network [4] 

Linear and branched polymers form a class of materials known as thermoplastic. 

A thermoplastic material is a high molecular weight polymer that is not cross linked. 

That is why these materials flow when give heat and can be molded into many shapes 

which they retain when cool but differ with the thermosetting materials. A thermosetting 

material is a heavy cross-linking material and once the cross-links form; these polymers 

cannot be changed anymore without destroying the plastics.  

 

1.1.2  CRYSTALLINITY IN POLYMERS 

 Polymers exist both in crystalline and amorphous region and this is called 

semicrystalline material. Crystalline region exists when the molecular chains packed in 

ordered arrangement and amorphous region exist in between these crystalline region 

which are arranged in disorganized state. Crystallinity is an indication of amount of 

crystalline region respect to amorphous region in polymer. Figure 1.2 illustrate the 

crystalline and amorphous region in polymer.When crystallinity increased, the rigidity, 
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tensile strength and opacity (due to light scattering) also increased. Amorphous 

polymers are usually less rigid, easily to deformed and often transparent.  The factors 

that influence the degree of crystallinity are chain length, chain branching and interchain 

bonding. Crystallinity in a polymer is very important in order to determine its properties. 

The more crystalline region in the polymer, the stronger and less flexible it become.  

 

Figure 1.2 Crystalline and amorphous region in polymer [3] 

For example, high density polyethylene (HDPE) form from very long 

unbranched hydrocarbon chains. These chains pack together easily in crystalline region 

and also alternate with amorphous region and finally produce the relatively strong and 

stiff. Compared to the low density polyethylene (LDPE) that form from smaller and 

many branched chains, these do not easily adopt crystalline structures. This polymer is 

softer, weaker, low density and easily deformed compared to HDPE. As a result, 

mechanical properties such as ductility, tensile strenght and hardness rise directly 

proportional to tha chain length [4]. 

Many polymers crystallized from a melt will form spherulites and each sperulites 

may grow to be spherical in shape and consist of lamellar such illustrated in Figure 1.3. 

Lamellar is the crystlline portion and the outside of lamellar is amorphous region. The 

lamellar crystals grows from center of spherullite [5]. To pass through amorphous 
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region, tie-chain molecules act as connecting links between adjacent lamellar. The 

surface of adjacent spherullites start to impinge on one another when the crystallization 

of a spherullitic structure near completion. 

 

Figure 1.3 Schematic of detailed structure of a spherulite [4] 

 If tensile load applied to the semicrystalline polymer, two adjacent chain-folded 

lamellar and interlamellar amorphous tend to deform in Figure 1.4 (a). The lamellar will 

slide each other within the amorphous region become extended in the initial stage as 

shows in Figure 1.4 (b). In a period of time, the deformation continued and chain folds 

become aligned with the tensile axis as in Figure 1.4 (c). If more load given, separation 

between crystalline segments occurred showed in Figure 1.4 (d). Finally, the blocks and 

tie chains aligned along the direction of tensile axis as in Figure 1.4 (e). Thus, this is 
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important to choose the right polymer because each polymer has different crystallinity 

and also has different properties. 

 

 

Figure 1.4 Stages in the deformation of semicrystalline polymer. (a) Two adjacent chain 

folded lamellea and interlamellar amorphous material before deformation. (b) 

Elongation of amorphous tie chains during first stage of deformation. (c) Tilting of 

lamellar chain folds during the second stage. (d) Separation of the crytalline block 

segments during the third stage. (e) Orientation of block segments and tie chains with 

the tensile axis in final stage [4] 
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1.1.3  MELTING TEMPERATURE, Tm AND GLASS TRANSITION 

TEMPERATURE, Tg IN POLYMER 

 At the melting temperature, Tm, the crystalline of polymers will lose their 

structure or melt. Tm depends on crystallinity, if crystallinity increases so does Tm. The 

melting of polymers takes place over a range of temperatures. The melting behaviour 

depends on temperature which it crystallizes. Impurities in the polymers also decrease 

the melting temperature.  

The stiffness of the chain controlled by the ease of rotation about the chemical 

bonds along the chain give the huge effect. The chain flexibility can be lower by the 

presence of double bonds and aromatic groups in the polymer backbone and finally 

increase the Tm. The size and type of side groups influence the chain rotational freedom 

and flexibility and raise of Tm. Table 1.1 showed that PP has a higher Tm than PE which 

are 175°C and 115°C respectively. It is because methyl group in PP is larger than the 

hydrogen atom in PE and this increase the Tm [3]. 

Glass temperature, Tg is the temperature where the polymers lose their structural 

mobility of polymer chains and become rigid glass.  The polymer will behave in 

increasingly brittle manner if the temperature drops below Tg and becomes more rubber-

like if the temperature rise aboveTg. The Tg also known as the temperature at which the 

molecules of the material move enough so that can be processed and polymers tend to be 

brittle below the Tg [6]. The value of Tg depends on molecular characteristics that affect 

chain stiffness, and all factors are same as the Tm. Thus, Tm and Tg is important during 

selecting materials for various applications. 

Figure 1.5 is the Tm and Tg for amorphous, semicrystalline and crystalline 

materials respectively. For crystalline material (curve C), there is discontinuous changes 

in specific volume at Tm while the amorphous material (curve A), the curve is 

continuous. For the semicrystalline materials, the behaviour is intermediate between 

crystalline and amorphous [4]. 
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Melting process involves the breaking of inter-chain bonds, so the glass and 

melting temperature depend on chain stiffness, molecular shape and size, side branches 

and cross-linking [5]. The right temperature must be setup because high temperature 

may degrade the polymer or destroy the chain and additives may decompose. If 

temperature is too low, the structure fails to achieve the required homogeneity and thus 

will reduce impact resistance [6]. Dwell time in process also play crucial role. If higher 

dwell time given, thermal decomposition may take place even the melt temperature is 

correct but if too short, the melt will not have time to fully homogeneous.  

 

 

Figure 1.5 Specific volume versus temperature for amorphous (curve A), semicrystalline 

(curve B) and cystalline (curve C)[4] 
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Table 1.1 Melting and Glass Transition Temperatures for Some of Common Polymeric 

Materials [3,9] 

Polymers Tm (ºC) Tg(ºC) 

Polypropylene (PP) 165 -18 

Poly-lactic Acid (PLA) 175 55 - 60 

Polyethylene (PE) 115 110 

Polytetrafluoroethylene (PTFE) 327 -97 

Polystyrene (PS) 240 100 

Polycarbonate (PC) 265 150 
 

 

  

1.1.4  POLYMER BLENDS 

Polymer blends occur when two or more different polymers mixed together. 

There are two types of polymer blends which are miscible and immiscible polymer 

blends. For miscible polymer blends, the miscibility and homogeneity extend down to 

the molecular lever which is no phase separation occur to the polymer. For immiscible 

polymer blends, there are phase separations occurs and sometimes called compatible 

blends. The compatible blends are also polymer alloy [11,14]. The light scattering, X-

ray scattering, and neutron scattering can be used in order to investigate the phase of 

polymer blends. 

In polymer blends, there are either homogenous or heterogeneous miscibility. 

Both polymers lose their identity and usually the new properties are arithmetical average 

of the polymer in homogeneous but in heterogeneous, the properties for involved 

polymers are present [12]. The weakness of the one polymer can affect the strengths of 

the polymer. But still, the blends can have better properties than individual element.  
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