"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree Bachelor of Mechanical Engineering (Structure & Material)"

Signature Tan 0 u to Name of Supervisor 05.2006 Date

STRUCTURAL DESIGN AND ANALYSIS OF SEWERAGE INSPECTION CRAWLER

ABD AZIZ BIN KADIR

This thesis is submitted to the Faculty of Mechanical Engineering In partial fulfillment of requirement for the degree Bachelor of Mechanical Engineering (Structure & Material)

Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

MEI 2006

C Universiti Teknikal Malaysia Melaka

I declared that this thesis entitled "Structural Design and Analysis of Sewerage Inspection Crawler" is the result of my own research except as cited in the references.

ABD. AZIZ B. KADIR Name 27.05.2006 Date

C Universiti Teknikal Malaysia Melaka

Dedicated to my beloved parents, family and my special one

ACKNOWLEDGEMENTS

Alhamdulillah thanks to God for giving me the opportunity in order to complete the thesis on structural design and analysis of sewerage inspection crawler. First of all I'm Abd. Aziz b. Kadir would like to express my fully grateful for the entire person that involves in completing my thesis writing for my final project.

For the first, thank you for my project's supervisor, Mr Tan Chee Fai for his support and guidance for me in completing my final project. Because of him, I could implement my final project with success and going smooth without any big trouble and problem. Any suggestions, ideas, any opinions from and what ever came from him are the learning process for me as a student who needs guidance in executing my project. And also, for his own time was used to me for the helpful discussion and benefited for me.

Also I would like to impress my grateful to my family especially my parents who was giving me the support to go on further with my study and completing this final project.

ABSTRACT

Structural design and analysis of sewerage inspection crawler is almost like the inspection vehicle that being used to determined the defect that occur in the underground sewerage piping system where human cannot detect in a naked eye. This crawler actually work on a piping system by using a movable robotic camera to detect where the problem in the underground piping system happen. Combining the mechanical, electrical and electronic system, this robotic crawler will be the suitable inspection vehicle to the industrial field in order to detect the problem occurs in the sewerage piping system. This robotic crawler will increase the efficiency of underground piping inspection system by the movement along the piping system inspect by the robotic camera that will detect the area of defect on the underground piping system especially crack and being controlled by the controller at the surface. The development of sewerage inspection crawler will decamp into the narrow piping system follow the pipe specification equipped by the camera, tether cable and the other equipment in internal body of the vehicle. This robotic crawler being design with a basic usage for inspection process in sewerage inspection system and it also giving a good impact in industrial field especially on the underground pipe system inspection.

ABSTRAK

Rekabentuk struktur dan analisis dalam perayap pembentungan adalah bertujuan melakukan operasi pemeriksaan terhadap sistem perpaipan di bawah tanah dimana manusia tidak dapat melakukanya. Perayap ini biasanya beroperasi di bawah sistem paip dengan menggunakan kamera robotik untuk mengenalpasti masalah yang berlaku pada sistem paip pembentung di bawah tanah. Dengan menggabungkan sistem mekanikal, elektrikal dan elektronik perayap robotik ini adalah sangat bersesuaian untuk melakukan pemeriksaan terhadap sistem perpaipan di bawah tanah. Perayap ini dapat meningkatkan kecekapan pengendalian sistem perpaipan di bawah tanah dengan mengenalpasti terlebih dahulu masalah yang terdapat pada sistem tersebut terutamanya rekahan yang berlaku pada paip tersebut dengan dikawal oleh manusia yang berada di atas permukaan tanah. Dengan pembangunan perayap pemeriksaan pembentungan ini masalah untuk mengenalpasti kecacatan pada sistem paip yang sempit dapat diatasi dengan spesifikasi perayap yang dilengkapi dengan kamera dan kelengkapan lain yang terdapat pada perayap ini. Untuk rekabentuk ini perayap robotik ini direka dengan kegunaan asas untuk pemeriksaan selain itu ia juga dapat memberikan impak yang besar terutamanya dalam sistem pemeriksaan paip pembentungan di bawah tanah.

TABLE OF CONTENTS

CHAPTER

CONTENT	
CONTENT	

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
LIST OF TABLE	x
LIST OF FIGURES	xi
LIST OF NOTATION	xv
LIST OF APPENDICES	xvi

1	INTI	RODUCTION	- 1
	1.1	Sewerage system In Malaysia	2
		1.1.1 Connected Sewerage System	4
		1.1.2 Sewerage Service	5
		1.1.3 Underground Pipe Summary	6
	1.2	Problem Statement	7
	1.3	Objectives	9

vii

LITE	RATURE REVIEW	10
2.1	Structural Review on Designing Crawler	10
2.2	Robotics	15
2.3	Indah Water Konsertium (IWK)	16
2.4	Belts	16
2.5	Stresses in Plates and Shell	18
2.6	Application of Nastran/Patran software	19
2.7	Standard components	20
2.8	Aluminium soldering-A new look	21
2.9	Bevel Gear	23
2.10	Micro step Controller	23
2.11	DC Motor Drive System	24
2.12	Roller Chain	25

3 METHODOLOGY

4

2

26

viii

Flow chart	27
Development of Structural Design	28
Application	28
Conceptual Design	29
Design Selection	36
Analysis for Design Selection	42
Designing Information	49
3.6.1 Selected Design	50
Suggested Mechanism on Design	51
	Flow chart Development of Structural Design Application Conceptual Design Design Selection Analysis for Design Selection Designing Information 3.6.1 Selected Design Suggested Mechanism on Design

	ANA	LYSIS	53
	4.1	Analysis for Material Selection	53
		4.1.1 Selected Material	61
	4.2	Designing Analysis	63

4.2.1	Structural Analysis	64
4.2.2	Chassis Analysis	65
4.2.3	Spring Shackle Analysis	73
4.2.4	Side Housing Analysis	80
4.2.5	Front Housing Analysis	82
4.2.6	Bottom Housing Analysis	84

ix

5	DISC	CUSSIONS	86
	5.1	Structure Design	87
	5.2	Chassis Design	89
	5.3	Spring Shackle Design	93
	5.4	Side Housing Design	97
	5.5	Front Housing Design	99
	5.6	Bottom Housing Design	101

6	CON	CLUSION	103
	6.2	Future Work	104

REFERENCES	105

APPENDIX	107
ATTENDIA	

LIST OF TABLES

TABLE		PAGE
2.1	Belt Specification	17
2.2	Soft and Hard Aluminium Solder	21
2.3	Motor Specification	24
4.1	Aluminium Properties	62
5.1	Structural Analysis Data	87
5.2	Chassis Analysis Data	89
5.3	Theoretical and Experimental Data	90
5.4	Spring Shackle Analysis Data	93
5.5	Theoretical and Experimental Data	94
5.6	Side Housing analysis data	97
5.7	Front Housing analysis data	99
5.8	Bottom Housing analysis Data	101

x

LIST OF FIGURES

FIGURE

PAGE

1.1	Underground piping system	2
1.2	Piping standard	3
1.3	Distance between manhole	4
1.4	Manhole specification	7
2.1	Cobra Advance Crawler	10
2.2	Inuktun Crawler	11
2.3	Vertical Pipe Crawler	12
2.4	Minitrac 5000	13
2.5	The Pipe Crawler	14
2.6	Belt equation	17
2.7	Stresses in Plate	18
2.8	Two ball journal bearing	20
2.9	Pre Soldered Joint	22
2.10	Soldered Joint with Solid Solder	22
2.11	Bevel gear	23
2.12	DC motor drive system	24
2.13	Roller Chain	25
3.1	Suggested mechanism	29
3.2	Design number 1	29
3.3	Design number 2	30

3.4	Design number 3	31
3.5	Design number 4	31
3.6	Design number 5	32
3.7	Design number 6	32
3.8	Design number 7	33
3.9	Design number 8	33
3.10	Design number 9	34
3.11	Design number 10	34
3.12	Design number 11	35
3.13	Design number 12	35
3.14	Review on design number 1	36
3.15	Side View	37
3.16	Inner Structure	37
3.17	Chassis and spring shackle	38
3.18	Structure	38
3.19	Tyre Specification	39
3.20	Front View	39
3.21	Isometric view design number 2	40
3.22	Inner structure	40
3.23	Isometric view design number 3	41
3.24	Inner structure	41
3.25	Deformed shape for 0.5kg applied load	43
3.26	Displacement for critical part	43
3.27	Von misses stress	44
3.28	Maximum shear stress	44
3.29	Deformed shapes for 0.5kg applied load	45
3.30	Displacement for critical part	45
3.31	Von misses stress	46
3.32	Maximum shear stress	46
3.33	Deformed shapes for 0.5kg applied load	47
3.34	Displacement for critical part	47

3.35	Von misses stress	48
3.36	Maximum shear stress	48
3.37	Mechanism design	51
3.38	Isometric view	52
3.39	Front view	52
3.40	Top view	52
4.1	Chassis	54
4.2	0.5 kg applied load	55
4.3	1 kg applied load	55
4.4	1.5 kg applied load	56
4.5	0.5 kg applied load	57
4.6	1 kg applied load	57
4.7	1.5 kg applied load	58
4.8	0.5 kg applied load	59
4.9	1 kg applied load	59
4.10	1.5 kg applied load	60
4.11	Aluminium properties	62
4.12	Selected design	63
4.13	Structural	64
4.14	Structural Deformed shape	64
4.15	Chassis	65
4.16	Structural Deformed shape	65
4.17	Chassis Displacement	66
4.18	Chassis Stress	67
4.19	Chassis	68
4.20	Spring shackle deformed shapes	73
4.21	Displacement for spring shackle critical part	74
4.22	Von misses stress for spring shackle	74
4.23	Side view	80
4.24	Side view Displacement	80
4.25	Side view Stress	81

4.26	Front View	82
4.27	Deformed Shape	82
4.28	Spring shackle displacement	83
4.29	Stress	83
4.30	Bottom Housing	84
4.31	Deformed Shape	84
4.32	Bottom displacement	85
4.33	Stress	85

xiv

LIST OF NOTATIONS

SYMBOL	DEFINITION
b,d	- Height and width
A	- Cross section area
M _x	- Moment for the x axis
W	- Applied load
R _a	- Reaction force
1	- Moment of inertia
L	- Length
У	- Deflection
E	- Young's Modulus
<i>C</i> ₁	- Unknown
GREEK	DEFINITION
ν	- Poisson ratio
SUBSCRIP	DEFINITION
m _{theory}	- Theoretical Slope
m _{exp}	- Experimental Slope

LIST OF APPENDICES

APPENDIX		PAGE
A	Questionnaire and letter	108
В	Activities	111
С	Drawing	112

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

The Pipe Crawler is a robot controlled from a distance by a human operator (using an ordinary personal computer) as it travels through a plumbing network. It rides on wheels and is composed of multiple sections flexibly connected like the cars of a train. The concept of this inspection crawler is almost like an inspection vehicle and it can move along the piping system and measure the defect on this piping system. Sewerage crawler is a robotic crawler being design measure the problems on the underground sewerage piping system where human cannot detect the specific area of defect occur.

This type of crawler can be use to measure the problem on the underground piping system including breakage, crack and stuck between each connection on the system. Normally, this kind of crawler can be use by Indah Water Konsertium Sdn Bhd (IWK) to make sure the underground pipe system operated without any problem. Sewerage inspection crawler being design to solve the problem on determining the defects occur in the sewerage piping system. Beside all the company that uses the underground piping system can apply the concept of this inspection vehicle on the piping inspection system because the concept is almost same in all condition that occur in operating the system (piping system). The concept of this crawler is only based on inspection; it will measure the crack and a leakage happen on the underground pipe system. This crawler is portable and it can applicant in dirty and clear water system that involve on the underground pipe system.

1.1 Sewerage System in Malaysia

Sewerage system are designed to collect, transfer, treat and dispose off domestic waste and wastewater from the toilet. In Malaysia, sewerage systems range from simple toilet providing little or no treatment to modern sewage treatment plants that employ mechanical means to treat large volume of sewage to acceptable environment standards. There are mainly two types of sewerage systems/services in Malaysia. The premises' sewerage systems are either connecting to a public sewage treatment plant or have an individual septic tank. IWK is mainly responsible for operating and maintaining the public sewage treatment plants and network of underground sewerage pipelines as well as providing desludging services to individual septic tanks. In order to make sure all the underground pipe system works without a problem IWK had make a decision to divide these underground pipe into two section where:

- a) Public pipe (under IWK)
- b) Private pipe (individual responsibility)

Figure 1.1 Underground piping systems

2

Normally, if it has any request from customer about their private pipe, IWK will give services and if it has to pay so, the individual must pay to IWK for their service. The IWK underground pipe is made on Vertical clay pipe (VCP) so it will more expose to the breakage.

A network of public sewer pipes is being constructed in areas currently being served by individual septic tanks to link homes to sewage treatment plants. The responsibility for laying the public sewer pipes rests with Indah Water while house owners are required to lay the private connection pipe that will connect their sewage outlet to the public sewer pipe. Connected sewerage systems comprise a network of underground sewer pipes, pump stations, sewage treatment plants and sludge treatment facilities. They generally operate by gravity. If pipe near the logistic so it will be deeper. As a result, sewage treatment plants are usually located at drainage catchments outlets so that they can capture all the sewage easily without the high cost required for pumping. Normally the pipe will divide into two standards:

- a) Standard A (Upstream)
- b) Standard B (Downstream)

Figure 1.2 Piping standard

3

1.1.1 Connected Sewerage System

Areas with connected service will have manholes along the public road and is covered with a round metal cover with IWK logo on top. In the manhole, which is about 10ft - 20ft deep, are sewerage pipes connecting the premises to the sewage treatment plant. Whenever there is any blockage, the checking and clearing of the blockage using a high powered vacuum and high pressured water hose will be done via the manhole.

Figure 1.3 Distance between manholes

1.1.2 Sewerage Services

Refurbishment, upgrading and constructing of public sewerage systems.

The rehabilitation work on existing plants with same capacity and/or treatment process will enhance the effectiveness and efficiency of such plants. The process entails fairy complex work ranging from civil engineering aspects of safety, security, cleanliness and aesthetics, to highly complex skilled mechanical and electrical serviceability of the plants.

The refurbishment works involve:

- a) Tidying up the treatment plant area and improving aesthetics and security
- b) Repairing or replacing pumps, electrical wiring and control panel
- c) Providing lightning protection
- d) Removing sludge from plants and holding tanks
- e) Testing and repairing processing equipment
- f) Ensure the plant meet applicable environmental standard
- g) Inspect and repairing or replacing sewage network pipes underground, which are connected to the plant.

1.1.3 Underground Pipe Summary

Example on Taman Melaka Perdana (AGH 139) *All the specification is same on each country. *Reference Indah Water Konsertium Sdn. Bhd Melaka

For Public pipe (near neighbourhood)

Max diameter = 225mm (9 inch) Min diameter = 150mm (6 inch)

Max length < 100m Min length = 15.666m

For Logistic pipe (near logy)

Max diameter = 375 mm Min diameter = 300mm

Max length < 100m Min length = 24.105m

From this data, estimation being made in specification of this crawler design to make sure that it can be use in this pipe system. According to this data, it have some major problem to design this crawler follow the specification of this pipe especially on how to fit this crawler on the underground pipe system and a conceptual design on this crawler according to the pipe type.

1.2 Problem Statement

To make sure this design is useful the major problem being determine. The problem on this designing inspection crawler is about the specification of the underground pipe system. It will be the most important thing because if the specification does not be measure this crawler probably cannot move into the underground pipe system. According to this problem, the research being made on Indah Water Konsertium Sdn. Bhd. (IWK) about the underground pipe specification and system. IWK staff Mr. Ishafudin B. Idris show the detail information about the specification that being use by IWK not only in Malacca but the whole state in Malaysia.

The specification of the underground pipe system for IWK is dividing into three groups where:

- a) Standard pipe (Diameter 225mm)
- b) Public pipe (Diameter 150mm)
- c) Building pipe (Diameter 100mm)

The specification between two manholes is less those a hundred meters. Manhole is the main entrance for every public pipe and it is located under the main road for every places.

Figure 1.4 Manhole specification