"Saya akui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan penanugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kuasa Industri)."

Nama Penyelia:

Tarikh: 8/5/06

MOHD ARIFF BIN MAT HANAFIAH

Ketua Jabatan

(Kawalan, Instrumentasi dan Automasi)

Fakulti Kejuruteraan Elektrik

Kolej Universiti Teknikal Kebangsaan Malaysia

"Saya akui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan penanugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kuasa Industri)."

> Nama Penyelia: Tarikh: 8/5/06

> > MOHD ARIFF BIN MAT HANAFIAH
> >
> > Ketua Jabatan
> >
> > (Kawalan, Instrumentasi dan Automasi)
> >
> > Fakulti Kejuruteraan Elektrik
> >
> > Kolej Universiti Teknikal Kebangsaan Malaysia

DESIGN AND IMPLEMENTATION OF AN AUTOMATED WORK-PIECE LOADER INDEXER TABLE STATION USING SENSOR AND PROGRAMMABLE LOGIC CONTROLLER (PLC)

DORA JAU

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree of Bachelor In Electrical Engineering (Industry Power)

Fakulti Kejuruteraan Elektrik Kolej Universiti Teknikal Kebangsaan Malaysia

April 2006

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."

Dedicated to my parents, and beloved sisters and brothers; Stewart, Alice, Grace and Albert.

ACKNOWLEDGEMENTS

I would like to thanks every body who giving their helping hand to help me to finish this project. Without them, this project is not successfully done perfectly within time. I am very grateful and thanks to God for giving me chance to live my life with abundant blessing.

I would like to express my deepest gratitude to my supervisor, Mr. Mohd. Ariff Bin Mat Hanafiah, for his engagement, support, encouraging attitude, and editorial advice in preparation during this project. Once again, thank you very much.

Not forgetting to my beloved parents, for their guidance, love, support and every thing they provide and giving to me. With this opportunity, I would like to thank my siblings; two brothers and two sisters who supporting me along this while. I love you all very much and thank you.

To all my friends who ever helping me and giving me support and advices, I am very appreciate. Thank you very much.

ABSTRACT

Industries mostly make use of the technology in order to produce quality products in huge amount in one period time with minimum cost. Therefore Automated Work-piece Loader Indexer Table Station, the Programmable Logic Controller (PLC) and sensors are use to control the whole system with higher efficiency with minimum cost. In this Indexer Table project has four stations with four different processes or activities. It is consisting both software and hardware with PLC programming. Automated Loader Indexer Table Station using sensors and PLC mainly, and have a few equipments which are stepper motor, cylinders, Arm-robot, DC Motor, valves and Stepper controller. Each of these equipments has its own functions in which to produce desire response or output. PLC is used to control the whole system and also to make modification and maintenance to this Automated Loader Indexer Table Station system. The sensors are used to sense and give input to the system. The cylinders, Arm-robot and DC Motor are purposely for doing the process at each station. The stepper is used to rotate the table.

ABSTRAK

Perundustrian banyak menggunakan teknologi ini untuk menghasilkan produk yang berkualiti dan produktiviti yang tinggi dengan kos yang minimum. Oleh itu *Automated Work-piece Loader Indexer Table Station*, menggunakan PLC dan pengesan (*sensor*) untuk mengawal seluruh sistem dengan lebih efisen dan kos yang minimum. Projek *Indexer Table* ini mempunyai empat stasen yang melakukan aktivi yang berbeza. Ia melibatkan kedua-dua program PLC dan juga perkakasan. Automated Loader Indexer Table Station ini juga menggunakan pengesan (sensor) dan PLC sebangai peralatan utama di samping peralatan lain seperti silider, Motor DC, Stepper, Arm-robot, valve dan juga pengawal Stepper. Setiap peralatan ini mempunyai kegunaan yang berbeza bagi melakukan setiap proses yang terlibat. PLC adalah untuk mengawal, mengubahsuai serta memperbaiki sistem. Silider, Arm-robot dan Motor DC adalah untuk melakukan proses pada setiap stesen. Manakala Stepper pula adalah untuk memutarkan meja.

CONTENTS

CHAPTER	SUBJECT	PAGE
	PROJECT TITTLE	i
	DECLEARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	LIST OF TABLE	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xiv
	LIST OF APPENDICES	xv
1	INTRODUCTION	
	1.1Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives	2
	1.4 Project Scopes	3
	1.5 Project Methodology	4
2	LITERATURE REVIEW	
	2.1 Introduction	8
	2.2 Automation System	9
	2.3 Control System	10
	2.3.1 Dialogue With The Machine	11
	2.3.2 Man-machine Dialogue	11
	2.3.3 Communication Machines With Other	12
	Machines	12
	2.4 Motion Control Technologies	13

CONTENTS

CHAPTER	SUBJECT	PAGE
	PROJECT TITTLE	i
	DECLEARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	LIST OF TABLE	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xiv
	LIST OF APPENDICES	xv
1	INTRODUCTION	
	1.1Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives	2
	1.4 Project Scopes	3
	1.5 Project Methodology	4
2	LITERATURE REVIEW	
	2.1 Introduction	8
	2.2 Automation System	9
	2.3 Control System	10
	2.3.1 Dialogue With The Machine	11
	2.3.2 Man-machine Dialogue	11
	2.3.3 Communication Machines With Other	
	Machines	12
	2.4 Motion Control Technologies	13

CHAPTER	SUBJECT	PAGE
2	2.5 Motor Technologies	14
	2.5.1 DC Motor Systems	14
	2.5.2 Step Motor Systems	15
	2.5.3 Servo System	18
	2.6 PLC Technology	21
	2.6.1 History of PLCs	21
	2.6.2 PLC Operations	22
	2.6.3 PLC Programming Language	23
	2.6.3.1 The Input/Output Devices	26
	2.7 Sensors Technology	26
	2.7.1 Sensors Benefits	26
	2.7.2 Advantages of Sensors	27
	2.7.3 Measured Value	28
	2.7.4 Types of Sensors	28
	2.8 Switch Technology	29
*	2.8.1 Switch Categorized	29
3	PROJECT'S THEORETICAL	
	3.1 Introduction	33
	3.2 Motor Selection	34
	3.3 Servo Motor Versus Stepper Motor	35
	3.4 Stepper Motor	36
	3.4.1 Common Characteristics of Stepper	
	Motors	38
	3.4.2 Types of Stepper Motors	40
	3.4.3 Advantages or Stepper Motor	41
	3.4.4 Disadvantages of Stepper Motor	42
	3.5 Sensors Selection	42
	3.5.1 Photo-electric Proximity Switch	42
	3.5.2 Magnet Proximity Switch	43

CHAPTER	SUBJECT	PAGE
3	3.6 Programmable Logic Controller (PLC)	
	Selection	43
	3.7 Actuator Selection	45
	3.8 Pre-actuator Selection	45
	è	
4	INDEXER TABLE SYSTEM	
	4.1 Introduction	46
	4.2 Logical Actuator	48
	4.2.1 Pneumatics System	48
	4.2.1.1 Pneumatic System Characteristics	49
	4.2.1.2 Safety Precaution	50
	4.3 Station And Process	50
	4.3.1 Station 1	50
(20)	4.3.2 Station 2	51
	4.3.3 Station 3	53
	4.3.4 Station 4	54
	4.4 Indexer Table Rotation	55
5	SYSTEM DESIGN AND DIAGRAM	
	5.1 Introduction	58
	5.2 Indexer Table Design	59
	5.3 Product Design	61
	5.4 Table Torque Calculation	63
	5.5 Pneumatic Circuit Diagram	68
	5.5.1 Station 1 Pneumatic Circuit Diagram	68
	5.5.2 Station 2 Pneumatic Circuit Diagram	70
	5.5.3 Station 3 Pneumatic Circuit Diagram	71
	5.5.4 Station 4 Pneumatic Circuit Diagram	72

6	CONTROL AND PROGRAMMING	
	6.1 Introduction	73
	6.2 Table Rotation Control And Programming	73
	6.3 Process Control And Programming	74
	6.3.1 Grafcet	74
	6.3.2 Station Control And Programming	74
7	RESULTS, DISCUSSION AND CONCLUSION	
	7.1 Introduction	76
	7.2 Expected Result And End Result	77
	7.2.1 Expected Results	77
	7.2.2 End Results	79
	7.3 Discussion And Analysis	81
&	7.4 Conclusion	82
	REFERENCES	84
	APPENDICES	86

LIST OF TABLE

NUMBER	TITLE	PAGE
3.1	The comparisons between servo	36
	motor and stepper motor	
4.1	Single coil excitation	56
4.2	Double coil excitation	56

LIST OF FIGURES

NUMBER	TITLE	PAGE
2.1	Automated system's part	9
2.2	General structure of an automated system	10
2.3	Organization of the Control System and the	12
	Application	
2.4	Motion control technology general structure	13
-2.5	DC Motor	15
2.6	Stepping Motor	17
2.7	Full stepping versus microstepping	17
2.8	Brushless Servo Motor	19
2.9	Linear Brushless Servo Motors	20
2.10	PLC general diagram	21
2.11	PLC Operations circulation	23
2.12	Ladder diagram (LD)	24
2.13	Function Block Diagram (FDB)	24
2.14	Structure Text (ST)	25
2.15	Sequential Function Chart (SFC) or Grafcet	25
2.16	Switch basic symbol	29
2.17	Switch pole configurations	30
2.18	Thrown switch configuration	30
2.19	Switch pole-contact schemes	31
3.1	Stepper basic connection	37
3.2	OMRON CQM1H	44
4.1	Indexer table station overview	47

NUMBER	TITLE	PAGE
4.2	Pneumatic system diagram	49
4.3	Station 1 connection diagram	51
4.4	Station 2 connection diagram	52
4.5	Station 3 connection diagram	53
4.6	Station 4 connection diagram	55
5.1	Indexer table isometric view	59
5.2	Indexer table top view	60
5.3	Indexer table front view	60
5.4	Indexer table side view	61
5.5	Product isometric view	61
5.6	Product top view	62
5.7	Product front view	62
5.8	Product side view	63
5.9	Operating pulses speed characteristic	65
5.10	Station 1 pneumatic circuit diagram	69
5.11	Station 2 pneumatic circuit diagram	70
5.12	Drilling process illustration	71
5.13	Stamping process illustration	71
5 14	Station 3 pneumatic circuit diagram	72

LIST OF SYMBOLS

PLC - Programmable Logic Controller

CPU - Central Processor Unit

KUTKM - Kolej Universiti Teknikal Kebangsaan Malaysia

sec - seconds (time)

mm - length unit

Hz - frequency unit

Kg - mass unit

LD - Ladder Diagram

FDB - Function Block Diagram

ST - Structure Text

SFC - Sequential Function Chart

N.m - Newton meter

FKE - Fakulti Kejuruteraan Elektrik

OMRON - PLC manufacturer (brand)

CQM1H - PLC model

I/O - Input/Output

f - frequency symbol

t - time symbol

m - weight symbol

V - voltage

DC - Direct Current

LIST OF APPENDICES

NUMBER	TITLE	PAGE
Α	Charting plan	87
В	Indexer table design	88
C	Product design	89
D	Inner Boards	90
E	Various I/O functions	91
F	Grafet	92
G	PLC program	93
Н	Project planning (Gantt chart)	94

CHAPTER 1

INTRODUCTION

1.1 Introduction

This project actually is all about the control system, where is applied to the Loader Indexer Table Station. Loader Indexer Table Station is commonly used in many applications in the manufacturing sector, such as the precision process and so on.

Automation system is applied to this project, so that every process will be done automatically using the sensors or detector and the Programmable Logic Controller (PLC) beside other auxiliary equipment or component.

This Loader Indexer Table Station have four stations which doing the different process of each stations. It is used to produce the product continuously and work independently without any further control by the operator.

There are two major tasks in this project. It is designing and implementing task which really require critical thinking. Both of the task is very important and has to be done successfully with proper progress.

1.2 Problem Statement

Any new project have several problems has to break through, all along the project's progress. These problems can generate ideas to come out with desire result at the end of the progress. In other hand, it can bring good and useful suggestion to the project. There ware several problems that I have state in this project, which is listed below:

- (a) Designing the manufacturing process of the project system.
- (b) Selecting the suitable actuator to rotate the table.
- (c) Selecting the actuator driver or controller.
- (d) Writing the Ladder Diagram for programming purpose.
- (e) Developing the hardware; assemble the hardware components and materials.
- (f) Hardware simulation.

1.3 Objectives

This project will be done successfully when the objectives of the project are state clearly. That will be the guide line to develop this project from state to state. The aims for this project are:

- (a) To design the Automated Work-piece Loader Indexer Table Station;
- (b) To study and use the technology of the PLC;
- (c) To design the manufacturing process of each station;
- (d) To design the Ladder Diagram program of the project;
- (e) To build the hardware of the Indexer Table Station;
- (f) To run the indexer table station system successfully;

1.4 Project Scopes

This project is actually based on the control system that use for the automated system. PLC is a control device or method to use to control and monitor the whole system. The sensors are also implant to the system as detector devices to do the limitation and detection process; control the input data. So, the PLC program must be build as a command to control the whole system that related in this project. The ladder diagram must be constructing. The function of the PLC has to be studied and understand in order to develop a perfect command and function well. Every path of the PLC has to be learned.

Beside that this project comes with the hardware as well. At the end of this project, the hardware must be completed and ready for hardware simulation. The Indexer Table itself has to build and do the implementation of the project specifications.

Not even that, this project also dealing with the electrical motor, where it uses to rotate the Indexer Table Station. The step angle, toque, rotation speed (rpm) has to be control and calculate in order to get the desire step angle with optimum accuracy. The motor have to be drive by a driver or controller and control the rotation speed and step angle of the motor.

Designing is a must to produce and develop this Automated Loader Indexer Table Station. There a several type of software that are use to design all of the system and material that will be use. The software that must have is AutoCAD and others.

The sensor or switch also plays the important role in this project. The characteristic and the function of this sensor have to be studied and learn. It will be place in the system as the detector, limiting, sense and as the input signal for the PLC to give command to other path of the system.

1.5 Project Methodology

Automated Loader Indexer Table Station has four main methods to complete this project with desire output. These methodologies are:

(a) Literature research

This is done by doing the research through some media to get the information and useful input to get some view of this Automated Loader Indexer Table Station. This research helps a lot to understand more about this project and created able to build the system for this project.

The research is done through reading the books, journals, articles, notes and other sources else. These types of information sources, able learn a lot about the automation system, control system and also the process system, including the manufacturing system. Then applied these information and input to develop this project and also as a guidelines to solve several problems that existed.

In order to understand the function of the equipments that are use in this project, reading and learning from the data sheets and the manuals of the equipments is needed. So that, able to know and understand the fundamental of each equipment and helps to make decision to choose the suitable equipment that suitable be implement in this project.

Beside that, need to surf the internet to get some information to increase the knowledge and skill to develop this project perfectly. From the internet, there are a lot of the articles, manuals, data sheets, journals, and other information to reed. Internet gives the world wide range information and it is easier for me looking for anything that related to indexer table station project.

Through this literature research, can conclude that there are abilities to develop this project and gain more knowledge and skill as well. It helps a lot in viewing the general ideas and even gives input to design this project until development stage.

(b) Hardware Development

The second methodology for this project is hardware development. Hardware development required several stage of development progress. Through this methodology, need to commit with one step to other steps to get the good result.

Firstly, need to design the table with certain value of diameter, width and the material of the table. Beside that, it needs to design the work piece or part too, which is including the material will be use and all the parameters. After that, the table is ready to build.

Then only come to the motor's selection stage. Have to list up all the motor that can be use to rotate the table with its criteria, such as the advantages and disadvantages of the motor, and also the application of the motor. After that, need to make the decision to choose the suitable motor type that will be used. This stage required the torque calculate and other required parameter in selecting the motor.

After choosing the motor, the next step is to decide whether the motor need the drive or not. If yes, again come to selection stage; to select the suitable controller or drive to drive the selected motor. The driver must suitable and able to drive that motor.

Selecting the pre-actuators and actuators come after the selection of the controller. Due to the system requirement that has been designed, then able to choose the pre-actuator and the actuator that will be used to develop this project. This stage is important when dealing with the movement mechanisms where its need some suitable equipment or actuator. The actuators need the pre-actuator to drive the actuators.

To control the whole system, it needs a special controller such as PLC. Then need to make sure all the related I/O boards that will be used are available in the PLC panel. Beside that it needs a set of computer to create a PLC program to control the system.

The next step is choosing the suitable sensors which will be implemented to the system. Again has to list up the sensors and switches with its' functions and also the criteria. Sensors selection is depend on the applications, material detection and also the function where its will be used.

The final step is to assemble all the hardware on one base and wiring the project. This step takes long time to assemble every thing and do the correct wiring. After that, the trouble shooting take place after assemble all the hardware equipments.

(c) Software development

This methodology required to design the hardware using the suitable software such as AutoCAD and the SolidWork software. Need to study on how to use this software and design the table and also the work-piece.

Beside that, the PLC software is used to program and control the project system. It also needs to study the command of the PLC and write the program one by one of the process till it's completed. This program writing stage takes longer time to finish it. Its need several command and must to be understand more about it, and able to use it. The program is written according the desire output and mechanism that have been designed before in the hardware development progress.

The PLC program is written using the CX-Programmer in Ladder Diagram method.

(d) Others

Others methodology, is attending a suitable class and laboratory session. This is important in order to learn the PLC and also the automation system where required high skill to develop it. It helps a lot on how to use and where to the PLC commands when writing the program.