

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF FOUR WHEELED AUTONOMOUS ROBOT

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic & Automation) with Honours.

by

Mohd Najib Bin Shaari

FACULTY OF MANUFACTURING ENGINEERING

2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUDUL: "Design and	d Development of Fou	ur Wheeled Autonomous Robot"
SESI PENGAJIAN: 20	009-2010	
Saya	MOHD NAJIB	BIN SHAARI
mengaku membena Perpustakaan Unive kegunaan seperti b	rkan tesis (PSM/Sarja ersiti Teknikal Malaysi erikut:	na/Doktor Falsafah) ini disimpan di a Melaka (UTeM) dengan syarat-syarat
 Tesis adalah hal Perpustakaan U untuk tujuan pe Perpustakaan di antara institusi **Sila tandakan 	k milik Universiti Tekr niversiti Teknikal Mala ngajian sahaja. benarkan membuat sa pengajian tinggi. (√)	nikal Malaysia Melaka . aysia Melaka dibenarkan membuat salinan alinan tesis ini sebagai bahan pertukaran
	(Mengandun atau kepent AKTA RAHSI/	gi maklumat yang berdarjah keselamatan ingan Malaysia yang termaktub di dalam A RASMI 1972)
TERHAD	(Mengandun oleh organis	gi maklumat TERHAD yang telah ditentukan asi/badan di mana penyelidikan dijalankan)
TIDAK T	ERHAD	
		Disahkan oleh:
(MOHD NAJ	B BIN SHAARI)	(SYAMIMI BINTI SHAMSUDDIN)
Alamat Tetap:		Cop Rasmi:
92 A, Kampung Se	entosa	
09400 Padang Ser	ai	
Kedah Darul Ama	1	

 * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara keria kursus dan penvelidikan, atau Laporan Projek Sarjana Muda (PSM).
 ** Jika tesis ini SULIT atau TEC Universiti Teknikal Malaysia Melaka) ada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Development of Four Wheeled Autonomous Robot" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MOHD NAJIB BIN SHAARI
Date	:	17/05/2010

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

Supervisor (Pn.Syamimi Binti Shamsudin) Faculty of Manufacturing Engineering (Official Stamp and Date)

ABSTRACT

The purpose of this project is to design and develop a four-wheel autonomous robot for the ROBOCON 2010 competition. This robot will utilize Light Dependant Resistor (LDR) sensor, two-wheel drive and Peripheral Interface Controller (PIC) microcontroller in order to perform its specified task. This robot will be programmed to track down a white line on a green colored game field. The main aim for this project is to produce an efficient, precise and high speed robot platform to carry out the competition task within an optimum time frame. The project involves data gathering about major robot components including hardware, software and studies on similar past project. The methodology discusses the flow chart of the whole project and Pugh Method of design selection. The design phase includes design process and design selection. By using SolidWork 2008 software, two designs are proposed. The best design will be chosen to be fabricated. The objectives that requires designing and developing the four wheels autonomous robot is achieved and give good result to fulfill the requirement of the ROBOCON 2010 competition.

ABSTRAK

Projek ini bertujuan untuk merekabentuk dan membangunkan sebuah robot berautonomi beroda empat untuk pertandingan ROBOCON 2010. Robot ini akan menggunakan penderia jenis Perintang Peka Cahaya, pacuan dua roda dan mikropengawal PIC dalam menyempurnakan tugasnya. Robot ini akan diaturcarakan untuk menjejak garisan putih pada latarbelakang kawasan gelanggang berwarna hijau. Tujuan utama projek ini adalah untuk menghasilkan robot yang cekap, tepat dan berkelajuan tinggi dalam menjalankan tugas dengan penggunaan waktu yang optimum. Projek ini merangkumi pengumpulan data tentang komponen utama robot termasuklah dari perkakasan, perisian dan juga kajian tentang projek lepas yang hampir sama. Bahagian methodologi membincangkan carta aliran berkaitan dengan keseluruhan projek dan pemilihan rekabentuk menggunakan kaedah Pugh. Fasa rekabentuk termasuklah proses rekabentuk dan pemilihan rekabentuk. Dengan menggunakan perisian SolidWorks 2008, dua rekabentuk dikemukakan. Rekabentuk terbaik akan dipilih untuk difabrikasi. Objektif yang memerlukan rekabentuk dan pembangunan robot berautonomi beroda empat telah tercapai dan memberikan hasil yang serta memenuhi keperluan bagi pertandingan ROBOCON 2010.

DEDICATION

Specially dedicated to my beloved father, Haji Shaari bin Kassim and my mother, Hajjah Jamaliah binti Hassan who are very concern, understanding, patient, and supporting. Special thanks to my supervisor, Mrs. Syamimi binti Shamsuddin for her constructive guidance, encouragement and patient in fulfilling our aspiration in completing this project. To my brothers, sisters, and my entire friend, the work and success will never be achieved without all of you.

ACKNOWLEDGEMENT

I would like to thank my supervisor Mrs. Syamimi binti Shamsuddin for helping me, guiding me and encouraging me to finish this four-wheel autonomous robot project. Without her guidance, I will not finish this project successfully. I also would like to thank my lecturer Mr. Shariman bin Abdullah who has given me support and guidance from the beginning until the end of this project. Thanks to all my friends who have been helping me in this project, giving me guides to finish the report with the correct format and teach me how to write in English with correct grammar. Special thanks to my friend, Siti Nurhidayah for spending her time to read and editing this report. Not to be forgotten, my parent, thank you for your perpetual encouragement, support and love for all this years. Lastly I would like to thank to all that directly or indirectly involve in finishing this project.

TABLE OF CONTENT

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	х
List of Figures	xi
List Abbreviations	XV

1. INTRODUCTION

Background	1
Problem Statement	5
Project Aim & Objectives	6
Project Scope	6
Robotic Technologies	6
History	7
Robot Definition	8
Benefits of Robots	8
Project Planning	10
	Background Problem Statement Project Aim & Objectives Project Scope Robotic Technologies History Robot Definition Benefits of Robots Project Planning

2. LITERATURE REVIEW

2.1	Introduction	12
2.2	Introduction to Robots	13
2.2.1	Manual Robots	13
2.2.2	Autonomous Robots	14
2.3	Mechanical Structure	14
2.3.1	Aluminium	15
2.3.2	Acrylic	16

2.3.3	Fiber	17
2.3.4	High Density Polyethylene (HDPE)	17
2.4	Actuator	19
2.4.1	Motor	19
2.4.1.1	Basic Principles of Electric Motor	19
2.4.2	Types of Motor	21
2.4.3	AC Motor	21
2.4.4	DC Motor	21
2.4.4.1	Brushless	23
2.4.4.2	Servo	24
2.4.4.3	Stepper	26
2.5	Fabrication	28
2.5.1	Machining	28
2.5.1.1	Lathe	29
2.5.1.2	Grinding	29
2.5.1.3	Drilling	31
2.5.2	Fasteners	32
2.5.2.1	Screw thread	32
2.5.2.2	Rivet	33
2.5.2.3	Welding	33
2.6	Wheel	34
2.6.1	Conventional Wheel	34
2.6.2	Castor Wheel	35
2.6.3	Omni directional wheel	36
2.6.4	Mecanum	36
2.7	Sensor	37
2.7.1	Limit switch	38
2.7.2	Light Dependent Resistor (LDR)	38
2.7.3	Color sensor	39
2.7.4	Optical Sensor	40
2.8	Gripping Mechanism	40

2.8.1	Clapper	41
2.8.2	Parallel Jaw Gripper	43
2.9	Controller	45
2.9.1	PC Based Controller	46
2.9.2	Programmable Logic Control (PLC)	47
2.9.3	PIC Microcontroller	49
2.9.4	PIC Microcontroller Family	50
2.9.5	PIC Microcontroller Manufacturer	51
2.9.5.1	Microchip	52
2.9.5.2	Atmel	52
2.10	Two Wheeled and Four Wheeled Robots	53
2.10.1	Two wheeled robot	53
2.10.2	Four wheeled robot	55
2.11	Software for Project development	61
2.11.1	Structural Design	61
2.11.1.	1 AutoCAD	61
2.11.1.	2 CATIA	62
2.11.1.	3 SolidWork	63
2.11.2	Electronic Circuit Design Software	64
2.11.2.	1 Express PCB	65
2.11.3	Microcontroller Programming	66
2.11.3.	1 MPLAB	66
2.12	Similar Past Project	67
2.12.1	ROBOCON 2009 Autonomous Robot	69
2.13	ROBOCON Competition	70
2.13.1	ABU ROBOCON 2010	70
2.13.2	Requirement for ROBOCON 2010 Autonomous Robot	71

3. METHODOLOGY

3.1.1	Introduction	74
3.1.2	Process Flow Planning	74

3.1.3	Data Collection for Literature Review	77
3.1.3.1	Internet	77
3.1.3.2	Journal	78
3.1.3.3	Books	78
3.2	Methodology	79
3.2.1	Mechanical Structure	80
3.2.2	Design	80
3.2.3	Fabrication	80
3.2.4	Assembly	80
3.2.5	Electrical and Electronic	8 0
3.2.6	Programming	8 1
3.3	Integration and Testing	81
3.4	Finalize Project Development	81
3.6	Software Tools	82
3.6.1	SolidWorks	82
3.6.2	MPLAB	86

4. DESIGN AND DEVELOPMENT

Design Phase	90
Pyramids Main Blocks Specification	91
First design	91
Specification of First Design	92
Advantages	93
Disadvantages	93
Second Design	93
Specification of Second Design	94
Advantages	94
Disadvantages	95
Design Selection	95
Pugh Method	95
Development Of Robot	97
	Design Phase Pyramids Main Blocks Specification First design Specification of First Design Advantages Disadvantages Second Design Specification of Second Design Advantages Disadvantages Disadvantages Design Selection Pugh Method Development Of Robot

viii

4.3.1	Mechanical Structure	97
4.3.1.	1 Robot Base and Body	97
4.3.1.	2 Lifting Mechanism	98
4.3.1.	3 Robot Gripper	100
4.3.1.	4 Wheel Locomotion	101
4.3.2	Electrical Circuit	102
4.3.2.	1 Etching Printed Circuit Board	102
4.3.2.	2 Wiring the Circuit and Electric Device.	106
4.3.3	Robot Programming	107
5.	TESTING, RESULT AND DISCUSSION	
5.1	Sensor and Circuit Test	113
5.2	Line Following Test	116
5.3	Lifting Test	119
5.4	Discussion	121
6.	CONCLUSION AND RECOMMENDATION	
6.1	Conclusion	123
6.2	Recommendation	124
REFI	ERENCES	125

APPENDIX

LIST OF TABLES

Table 2.1	Types of Lathe Operation.	29
Table 4.1	Selection of Design using Pugh Method	92
Table 4.2	Weigh for Criteria Selection	92
Table 4.3	Function of PIC IO pin at AR40B controller board	109

LIST OF FIGURES

Figure 1	Design of an ideal differentially driven robot	3	
Figure 1.1	Four wheel Mobile Robot		
Figure 1.2	Simple design of wheel robot		
Figure 1.3	All terrain Robot		
Figure 1.4	Gantt Chart for project Planning		
Figure 2	Manual robot from ROBOCON competition		
Figure 2.1:	Autonomous robot compete in ROBOCON		
Figure 2.2	Lifting mechanism using Aluminum on the ROBOCON 2008	14	
	Autonomous Robot		
Figure 2.3	Gripper made by acrylic sheet on the ROBOCON 2008 manual	15	
	robot.		
Figure 2.4	Carbon Fiber for robot base	16	
Figure 2.5	Robot base from HDPE	17	
Figure 2.6	Robot Structure and gripper from HDPE	1 7	
Figure 2.7	Part of an electric motor	19	
Figure 2.8	A rotating electric motor	19	
Figure 2.9	The construction of DC Motor	21	
Figure 2.10	DC Motor	22	
Figure 2.11	Brushless Motor	22	
Figure 2.12	The typical radio-controlled (R/C) servo motor.	23	
Figure 2.13	The internal parts of an R/C servo. The servo consists of a motor,	24	
	a gear train, a potentiometer, and some control circuits.		
Figure 2.14	A typical unipolar stepper motor.	26	
Figure 2.15	Inside a unipolar stepper motor .Note the two sets of coils and	26	
	stators. The unipolar stepper is rally two motors sandwiched togeth	ner	
Figure 2.16	Drill machine,	31	
Figure 2.17	Some of the different mechanical fasteners that can be used to	32	
	hold different pieces of a robot's structure.		

Figure 2.18	Conventional wheel for autonomous robot	35	
Figure 2.19	Commonly castor wheel use for robots		
Figure 2.20	Universal wheel : (a)simple,(b) double,(c) alternate		
Figure 2.21	Traditional Mecanum wheels		
Figure 2.22	Limit switch		
Figure 2.23	Block diagram of color sensor system		
Figure 2.24	Optical Sensor		
Figure 2.25	Simple direct drive swinging jaw		
Figure 2.26	Simple direct drive through right angle worm drive gear motor		
Figure 2.27	Rack and pinion drive gripper	42	
Figure 2.28	Reciprocating lever gripper	42	
Figure 2.29	Linear actuator direct drive gripper	43	
Figure 2.30	Parallel jaw on linear slides	43	
Figure 2.31	Parallel jaw using four-bar linkage and linear actuator	44	
Figure 2.32	Passive parallel jaw using cross tie	44	
Figure 2.33	Functional Block Diagram of Controller	45	
Figure 2.34	The structure of the robot control system		
Figure 2.35	Component In PLC	47	
Figure 2.36	Hardwired logic circuit and its PLC ladder language	48	
	implementation		
Figure2.37	Burning data process into PIC	49	
Figure 2.38	PIC Models	50	
Figure 2.39	PIC 16F Block Diagram	51	
Figure 2.40	Microchip logo and product	52	
Figure 2.41	(a)ATMEL logo and (b) microcontroller	53	
Figure 2.42	A commercial two-wheel differential-drive robot	54	
Figure 2.43	Differential drive configuration with two drive wheels and a	55	
	castor wheel		
Figure 2.44	Example of two wheeled robot	55	
Figure 2.45	The Ackerman Steering types	56	

Figure 2.46	The Independent Explicit steering schemes	57	
Figure 2.47	The Frame Articulated steering schemes		
Figure 2.48	The Axle Articulated steering schemes		
Figure 2.49	The Skid steering schemes		
Figure 2.50:	The Skid Steer Locomotion		
Figure 2.51	Types of four wheeled locomotion for autonomous robot.		
Figure 2.52	Example drawing using AutoCAD software		
Figure 2.53	Example drawing use CATIA software		
Figure 2.54	Drawing using SolidWork software		
Figure 2.55	Circuit Design using Express PCB software		
Figure 2.56	Window for MPLAB Software		
Figure 2.57	Monster truck robot		
Figure 2.58	Squarebot	68	
Figure 2.59	Autonomous Robot for ROBOCON 2009	69	
Figure 2.60	ROBOCON 2010 gamefield	71	
Figure 2.61	Khafraa Pyramid	72	
Figure 2.62	Dimension of Main block		
Figure 2.63	Dimension of Top Block	73	
Figure 3.1	Flow Chart for Planning Process	72	
Figure 3.2	Web browser and search engine (a) Mozila Firefox,(b) Internet	78	
	Explorer,(c) Yahoo and(d) Google		
Figure 3.3	Flow chart for design and develop mechanical structure	79	
Figure 3.4	Click on SolidWorks icon.	82	
Figure 3.5	SolidWork window	83	
Figure 3.6	Click on New file icon	83	
Figure 3.7	Select the drawing option	84	
Figure 3.8	Select the plain surface to start drawing	84	
Figure 3.9	Start drawing by using the selection icon.	85	
Figure 3.10	Save the drawing to selection location	85	
Figure 3.11	Click on MPLAB icon to open software.	86	
Figure 3.12	Select the project wizard.	86	

Figure 3.13	Click the next option in the project wizard window	87	
Figure 3.14	Select the PIC device		
Figure 3.15	Step to active tool suite		
Figure 3.16	Step to create new project		
Figure 3.17	Create the file for new project		
Figure 3.18	Window of finish after create new file project wizard		
Figure 4.1	Specification of Main Block		
Figure 4.2	First Design for Autonomous Robot		
Figure 4.3	Second Design for Autonomous Robot		
Figure 4.4	Different gripper length	94	
Figure 4.5	Belting system for autonomous robot.	95	
Figure 4.6	Robot Base	97	
Figure 4.7	Robot Body	98	
Figure 4.8	Lifting Mechanism	99	
Figure 4.9	Rope path	99	
Figure 4.10	Rope reel	100	
Figure 4.11	Robot Gripper	101	
Figure 4.12	PCB Electrical pads	102	
Figure 4.13	(a) Transparent sheet on the board, (b) Iron the transparent sheet	103	
	to leave the carbon.		
Figure 4.14	(a) Pour the Ferric Chloride in the container, (b) Finished	103	
	PCB circuit.		
Figure 4.15	Voltage regulator circuit	104	
Figure 4.16	LDR Sensor circuit	105	
Figure 4.17	LDR Comparator Circuit	105	
Figure 4.18	Wiring the circuit and electric component.	106	
Figure 4.19	Wiring the controller board	107	
Figure 4.20	Example of Starting the program	108	
Figure 4.21	Declaration for input and output port	110	
Figure 4.22	Function for LDR Sensor	111	
Figure 4.22	LDR Sensor Programming	112	

Figure 5.1	LDR sensor for the center line of the white line,	114
	sensor detected R1, C and L1.	
Figure 5.2	LDR sensor for the left position of the white line,	115
	sensor detected L1, L2 and L3.	
Figure 5.3	LDR sensor for the right position of the white line,	115
	sensor detected R1, R2 and R3.	
Figure 5.4	LDR comparator for adjustment the sensor.	116
Figure 5.5	Robot testing on the white line.	117
Figure 5.6	Robot testing on the white line junction	118
Figure 5.7	Lifting test.	119
Figure 5.8	Lifting test for first level	120
Figure 5.9	Lifting test for second level	120
Figure 5.10	Lifting test for third level	120
Figure 5.11	Lifting the golden top cube.	121

LIST ABBREVIATIONS

ABU	-	Asia-Pacific Broadcasting Union
AC	-	Alternate Current
ADC	-	Analog-to-Digital Converter
AGV	-	Automated Guided Vehicles
API	-	Application programming interfaces
BLDCs	-	Brushless direct-current motors
CAD	-	Computer Aided Design
CATIA	-	Computer Aided Three-dimensional Interactive Application
ССР	-	Capture/ Compare/Pulse width modulation
Со	-	Company
CPU	-	Central Processing Unit
DC	-	Direct Current
DOF	-	Degree of freedom
EEPROM	-	Electrically erasable programmable read-only memory.
HDPE	-	High density Polyethylene
IDE	-	Integrated Development Environment
I/O	-	Input and Output
IR	-	Infra red
LDR	-	Light dependent resistor
LED	-	Light Emmiting Diod
NASA	-	National Aeronautics and Space Administration.
PC	-	Personal Computer
PCB	-	Printed Circuit Board
PIC	-	Peripheral Interface Controller
PLC	-	Programmable Logic Control
PMDC	-	Permanent-magnet direct-current
PSM	-	Projek Sarjana Muda

QFD	-	Quality Function Deployment
RAM	-	Random Access Memory
R/C	-	Radio controlled
ROBOCON	-	Robot Contest
ROI	-	Return on investment
ROM	-	Read only memory
TV	-	Television
USART	-	Universal Synchronous Asynchronous Receiver Transmitter
VCRs	-	Video cassette recorder
LDR		Light Dependent Resistor
LED		Light Emmiter Diod
V		Volt

CHAPTER 1 INTRODUCTION

This chapter reviews the overall content of the project. Introduction of the project includes the project background, problem statements of the project, project aims and objectives, project scopes, robotic technologies and project planning.

1.1 Background

Nowadays, development of technologies especially in robotic are growing in a very fast pace. A variety design of robots has been develop in recent years in order to improve the design and their performance. The most popular robot today is the autonomous robot.

Autonomous robots can be defined as the robot which is programmed for perform task continuously without human guide in unstructured environment. Every robot has different ability to perform task and different robots can be autonomous in different ways.

Autonomous distributed robots have potential to accomplish various missions which conventional robots have not ever done such as cooperative transportation, collection and construction (Inou *et al* 2003). Autonomous robot can perform the task that human cannot perform like space and underwater exploration and tasks that may dangerous for human like handling chemical and explosive materials. Industrial and technical applications of autonomous robots are continuously gaining in importance. They are already widely used for surveillance, inspection and transportation tasks.

One of the main characteristic of an autonomous mobile robot is its ability to move through the operational space, avoiding obstacles and finding its way to the next location, in order to perform its task, capabilities known as localization and navigation. In order to know where to go, the robot must have accurate knowledge of its current location. That means it should use a great variety of sensors, external references and algorithms. In order to move in tight areas and to avoid obstacles mobile robots should have good mobility and ability. These capabilities mainly depend on the wheels design. Research is continuously going on in this field, to improve the autonomous navigation capability of mobile robotic systems (Doroftei *et al* 2007).

Basically, autonomous robot can be developed in two way locomotion. It depends on the requirement whether to develop a legged robot or wheeled robot. Locomotion is most important part in design and develops a robot. In each case, the locomotion system is driven by a motor, which turns a shaft, cam, or lever. This motive force affects forward or backward movement. Wheels are the most popular method for providing robots with mobility. Robot wheels can be just about any size, limited only by the dimensions of the robot and builder outlandish imagination (Mccomb 2006).

Refering the Miles (2002), wheels are pretty much proven in all types of robot applications, from the smallest desktop Sumo machine to the largest mobile industrial robots. Even designers for NASA's Mars-exploration robots gave up on legs and other means of locomotion in favor of wheels.

Robots can have just about any number of wheels, although two is the most common, creating a differentially driven robot.

Figure 1.0: Design of an ideal differentially driven robot (Mccomb 2006).

Figure 1 shows the design of an ideal differentially driven robot. In this case, the robot is balanced on the two wheels by one or two free-rolling casters, or perhaps even a third swivel wheel. Besides that, autonomous robot also can be a four wheel locomotion.

Figure 1.1: Four wheel Mobile Robot (www.robots.mobilerobots.com)