"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Mechanical Engineering

たに

(Thermal-Fluids)"

Signature

Name of Supervisor 1 : MR. TEE BOON TUAN 29 MAY 2006

Signature : Name of Supervisor 2 : Date :

C Universiti Teknikal Malaysia Melaka

OPTIMIZING HVAC SYSTEM USING VEHICLE PASSENGER THERMAL COMFORT MODEL

苔

NUR SHUHADA YUSOFF

This thesis is submitted to Mechanical Engineering Faculty in partial fulfillment of the requirements for the award of Bachelor Degree in Mechanical Engineering (Thermal-Fluids)

> Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

> > May 2006

I declare that this thesis entitled "Optimizing HVAC System Using Vehicle Thermal Comfort Model" is the result of my own research except as cited in the references.

Signature	. & .	
Name	: NUR SHUHADA	MUSUFF
Date	: 29 MAY 2006	

For my beloved parents, Arpiah Haji Awang & Yusoff Omar, and dearest sister Tasnim Yusoff

1

1/2

ACKNOWLEDGEMENT

First and foremost, I would like to express my grateful appreciation to the God above because with His blessing have greatly helped me to complete my *Projek Sarjana MudaI* successfully. Although I faced some problems during the hardest time doing the *Projek Sarjana Muda* but with my full commitment and cooperation with others, it helps me to go on to my mission to complete this *Projek Sarjana Muda*.

Next, my acknowledgement with appreciation and gratitude goes to my supervisor, Mr Tee Boon Tuan for his guidance, knowledge and spirit to complete this *Projek Sarjana Muda*. Last but not least, for the correspondents involved in completing the *Projek Sarjana Muda*. Here,I would like to thank you all for your cooperation and support. I could not have done it without your overwhelming support.

Finally, to whom that I not mention in here that give their support and help me from behind, thank you very much and lot a love from me to them.

Thank You Very Much

ABSTRACT

Human comfort in passenger compartment is a prime concern for designers, owners and passengers. Interior climate is one of the main comfort factors during a trip. Besides, it is also very important for interior safety because temperature humidity affect the driver's well-being and thus his or her level of alertness and of course the heating and ventilation system is also responsible for demisting the windscreen and side windows. Recently, there has been a major development in the area of HVAC system using passenger thermal comfort to ensure that the occupants are comfortable staying in the vehicle. More investigation of the design parameters space is conducted to bring the final design closer to the optimum. For this purpose, a model car is selected to perform analysis for thermal comfort inside the model car as well as to investigate the occupant thermal comfort in order to support automotive climate control systems. Based on the experiment, simulation and questionnaire, it is found that the most comfortable condition inside the passenger compartment is where blower is set at the third level speed. At this condition, most of the occupants claimed to be in comfortable state with the temperature around 20°C to 25°C and the highest velocity around 1.5 m/s.

ABSTRAK

Keselesaan penumpang di dalam kenderaan adalah faktor utama bagi perekacipta, pemilik kenderaan dan pengguna kenderaan. Persekitaran dalaman adalah faktor utama dalam menjamin keselesaan terutamanya bagi perjalanan yang jauh. Selain itu, ia penting dari segi keselamatan kerana suhu adalah aspek utama yang boleh mempengaruhi kesihatan, dan tahap fokus dan kewaspadaan pemandu. Kepanasan dan pengudaraan di dalam kenderaan juga dalah faktor penting yang patut diambil kira bagi memastikan cermin kereta tidak berada dalam keadaan kabur yang boleh menjejaskan penglihatan dan pandangan pemandu di mana keadaan ini boleh membahayakan pemandu. Kini, pelbagai usaha dalam bidang sistem HVAC (heating, ventilating and air-conditioning) menggunakan keselesaan terma bagi penumpang dijalankan untuk memastikan penumpang tahap keselesaan di dalam kenderaan. Pelbagai kajian tentang ruang rekaan parameter telah dijalanakan untuk mendapatkan nilai rekaan rekaan yang paling optima. Bagi tujuan ini, sebuah kereta telah dipilih sebagai model kes kajian untuk menganalisis keselesaan terma di dalam kereta sebagai salah satu usaha di dalam membangunkan sistem kawalan terhadap persekitaran automotif. Berdasarkan kajian, simulasi dan soal selidik, didapati bahawa kebanyakan pengguna berpendapat bahawa tahap keselesaan di dalam kenderaan ialah apabila kelajuan "blower" ditetapkan pada kelajuan ketiga di mana suhu berada pada kira-kira 20°C to 25°C dan halaju udara pula berada pada kira-kira 1.5 m/s.

TABLE OF CONTENTS

TITLE	PAGE
TITLE PAGE	i
ADMISSION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLE	xvii
LIST OF SYMBOL	xix
LIST OF APPENDICES	XX

CONTENTS

6

CHAPTER	ITE	CM		PAGE
1	INT	RODUC	TION	
	1.1	Introd	uction	1
	1.2	Object	tive of Research	2
	1.3	Proble	em Statement	3
	1.4	Scope	s of Study	4
	1.5	Projec	t Significant	4
	1.6	Expec	ted Outcomes	5
2	LIT	ERATU	RE REVIEW	
	2.1	Introdu	uction	6
	2.2	Purpos	se of Heating And Ventilating	7
		2.2.1	Flow-through Ventilation	7
	2.3	Researc	h Articles	8
		2.3.1	Study Case 1	8
		2.3.2	Study Case 2	20
		2.3.3	Study Case 3	30
		2.3.4	Study Case 4	35
	2.4	Conclu	ision	44

1

viii

CHAPTER	ITE	М		PAGE
			6 8	
3	PRC		IETHODOLOGY	
	3.1	Resear	rch Methods	45
	3.2	Resear	rch Design	47
	3.3	Instrum	nentation	49
		3.3.1	Airflow Velocity Meter	49
4	COM	APUTAT	'IONAL FLUID DYNAMICS	
	4.1		ew On Climate Control Simulation	51
		4.1.1	Procedures In Developing Parametric Mod	del
			Using Phoenix Software	52
		4.1.2	Numerical Controls Setting	65
		4.1.3	Using the VR Viewer	65
		4.1.4	Running the Solver	66
5	CAL	CULAT	ION	
	5.1	Mather	natical Approach for Net Volume of the Car	69
	5.2	Vehicle	e Parameters and Calculation	70
		5.2.1	Sample Calculation	72
6	RES	ULTS AN	NALYSIS AND DISCUSSION	
	6.1	Simulatio	on Results For Each of The Cases	79
		6.1.1	Case 1	82
		6.1.2	Case 2	91
		6.1.3	Case 3	100
		6.14	Case 4	109
	6.2	Graph	Analysis For Each Of The Cases	117

5

6

1

ix

CHAPTER ITEM

7

6.2.1 Case 1 (Air-Conditioner at The Lowest Level	
	For Temperature & Velocity)	117
6.2.2	Case 2 (Air-Conditioner at The Second	Level
	For Temperature & Velocity)	120
6.2.3	Case 3 (Air-Conditioner at The Third L	evel
	For Temperature & Velocity)	123
6.2.4	Case 4 (Air-Conditioner at The Fourth Level	
	For Temperature & Velocity)	125

1

Guideline For Optimizing HVAC System

7.1	Guidelines		128
7.2	Recommendation For Future Study	2.2	130
REFERENCES			131
APPENDIX A			133
APPENDIX B			141

1

LIST OF FIGURES

4

FIGURE NO. TITLE

PAGE

2.1	Driver Skin Temperature During Soak And Cool Down	9
2.2	Cabin Airflow And Temperature Prediction	10
2.3	CFD/Thermal Simulation	11
2.4	Thermal comfort diagram for the effects of velocity	16
2.5	Thermal comfort diagram for the effects of interior surface	
	temperatures	17
2.6	The effect of solar incident e angle	18
2.7	Thermal comfort diagram for the effects of solar	
	incidence angles	19
2.8	Experimental setup for the passenger compartment	
	cooling test	20
2.9	Schematic of a simplified passenger compartment	21
2.10	Prediction of solar flux (W/m^2) absorbed by the glasses of	the
	simplified passenger compartment	23
2.11	Prediction of solar flux (W/m ²) on the interior surface of th	e
	simplified passenger compartment.	24
2.12	The measured A/C outlet discharged temperature variation	
	with time for "soak and cool-down simulation"	25
2.13	Passenger compartment mesh	26
2.14	Velocity prediction at the vehicle center plane	26
2.15	Velocity prediction at the passenger center plane	27
2.16	Temperature Prediction at the passenger centre line	27
2.17	The six monitored temperature locations to compare with	
	thermocouple data at the passenger centre plane	29

2.18	Prediction of the breath level temperatures and the	
	comparison with the thermocouple	29
2.19	The geometry of the exterior of the vehicle compartment	31
2.20	The geometry of the cabin interior showing the distribution	
	of air inlets and four passengers	31
2.21	Surface grid on the compartment interior and three passengers	32
2.22	Path lines are used to illustrate the flow through the compartment	33
2.23	Velocity field on a horizontal cut plane	34
2.24	Temperature contours on a vertical slice through the left side of	
	the compartment	35
2.25	Parametric Cabin Model	36
2.26	Cabin without mannequin	36
2.27	Cabin mesh with mannequins	38
2.28	Streamlines from the vents	39
2.29	Velocity magnitude on mannequin surfaces	40
2.30	Temperature on mannequin surfaces after 15 minutes	41
2.31	Transient curves of overall subjective thermal comfort ratings	41
2.32	Comparison of time to comfort rates for the same model with and	
	without mannequins	42
2.33	Local body segment comfort ratings of driver at overall time	
	to comfort	43
3.1	The flow chart of the study approach	46
3.2	A Perodua Kancil as a case study	47
3.3	The seats at the rear compartment	48
3.4	The front side of the car compartment	48
3.5	The Airflow Velocity Meter	50
4.1	The flow chart of the procedures for simulation	52
4.2	Starting Phoenix	52

10

	4	
4.3	Box consisting the "Core" command	53
4.4	Coordinate system box	54
4.5	X,Y,Z axle as the drawing axis	54
4.6	The points that will be attached by lines to create the body of c	abin
	compartment	56
4.7	The points are joint with straight lines	57
4.8	The two opposite faces are about to be joined	58
4.9	The dimension to determine the grid direction	60
4.10	The "Match Grid" that is used to create the frame	61
4.11	The car body after being joint for meshing process	62
4.12	The grid direction	62
4.13	The blocks as the equipment inside the car	63
4.14	The numeric control	64
4.15	The box used to set the initial value before simulation	64
4.16	Setting for numeric	65
4.17	The solver on working	66
4.18	The probe controller to place the plane	67
4.19	The probe that will show the value of the desired parameter	68
5.1	The exterior body of the car from side view	72
5.2	The vent/dashboard of the car	74
5.3	The front seat	75
5.4	The back seat	76
5.5	Board at the backseat	77
6.1	The location for each of seats inside the car	79
6.2	The temperature value for Seat A (Case 1)	82
6.3	The temperature value for Seat B (Case 1)	83
6.4	The temperature value for Seat C (Case 1)	84
6.5	The temperature value for Seat D(Case 1)	85

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

8	
The temperature value for Seat E(Case 1)	86
Velocity simulation inside the car for Case 1	87
Velocity simulation for Seat A (Case 1)	88
Velocity simulation for Seat B (Case 1)	88
Velocity simulation for Seat C (Case 1)	89
Velocity simulation for Seat D (Case 1)	89
Velocity simulation for Seat E (Case 1)	90
Temperature simulation for Seat A (Case 2)	91
Temperature simulation for Seat B (Case 2)	92
Temperature simulation for Seat C (Case 2)	93
Temperature simulation for Seat D (Case 2)	94
Temperature simulation for Seat E (Case 2)	94
Velocity simulation for Case 2	95
Velocity simulation for Seat A (Case 2)	96
Velocity simulation for Seat B (Case 2)	97

6.19	Velocity simulation for Seat A (Case 2)	96
6.20	Velocity simulation for Seat B (Case 2)	97
6.21	Velocity simulation for Seat C (Case 2)	97
6.22	Velocity simulation for Seat D (Case 2)	98
6.23	Velocity simulation for Seat E (Case 2)	99
6.24	Temperature simulation for Seat A (Case 3)	100
6.25	Temperature simulation for Seat B (Case 3)	101
6.26	Temperature simulation for Seat C (Case 3)	102

6.27Temperature simulation for Seat D (Case 3)103

1

	4	
6.28	Temperature simulation for Seat E (Case 3)	104
6.29	Velocity simulation for Case 3	105
6.30	Velocity simulation for Seat A (Case 3)	106
6.31	Velocity simulation for Seat B (Case 3)	106
6.32	Velocity simulation for Seat C (Case 3)	107
6.33	Velocity simulation for Seat D (Case 3)	107
6.34	Velocity simulation for Seat E (Case 3)	108
6.35	Temperature simulation for Seat A (Case 4)	109
6.36	Temperature simulation for Seat B (Case 4)	110
6.37	Temperature simulation for Seat C (Case 4)	111
6.38	Temperature simulation for Seat D (Case 4)	111
6.39	Temperature simulation for Seat E (Case 4)	112
6.40	Velocity simulation for Case 4	113
6.41	Velocity simulation for Seat A (Case 4)	114
6.42	Velocity simulation for Seat B (Case 4)	114
6.43	Velocity simulation for Seat C (Case 4)	115
6.44	Velocity simulation for Seat D (Case 4)	115
6.45	Velocity simulation for Seat E (Case 4)	116
6.46`	The temperature of Case 1	117
6.47	The velocity of Case 1	118
6.48	The temperature for seats of Case 2	120
6.49	The velocity of Case 2	121

4

	<i>b</i>	
6.50	The temperature for seats of Case 3	123
6.51	The velocity of Case 3	124
6.52	The temperature for seats of Case 4	125
6.53	The velocity of Case 4	126

5

LIST OF TABLES

4

in the

TABLE NO. TITLE

2.1	Test cases for solar buck	15
2.2	The rating scale of thermal comfort model	37
2.3	The capabilities of using mannequin method	39
4.1	The coordinate to make the external boundary of the car	55
4.2	Table the line and number of cell	58
5.1	Properties of Air inside of a Perodua Kancil	71
6.1	The initial setting of velocities at different inlets and	
	temperatures for different seats at speed 1	80
6.2	The initial setting of velocities at different inlets and	
	temperatures for different seats at speed 2	80
6.3	The initial setting of velocities at different inlets and	
	temperatures for different seats at speed 3	81
6.4	The initial setting of velocities at different inlets and	
	temperatures for different seats at speed 4	81
6.5	Comparison between simulation result and experimental result	
	for Case 1 For Temperature	86
6.6	Comparison between simulation result and experimental	
	result for Case 1 For Velocity	91
6.7	Comparison between simulation result and experimental	
	result for Case 2 For Temperature	95
6.8	Comparison between simulation result and experimental	
	result for Case 2 For Velocity	100

1/2

TABLE NO. TITLE

6.9	Comparison between simulation result and experimental result	
	for Case 3 For Temperature	104
6.10	Comparison between simulation result and experimental result	
	for Case 3 For Velocity	109
6.11	Comparison between simulation result and experimental result	
	for Case 4 For Temperature	112
6.12	Comparison between simulation result and experimental result	
	for Case 4 For Velocity	117

1

1

xviii

LIST OF SYMBOL

SYMBOL DEFINITION

Р	Pressure inside of the car (Pascals)	
V	Volume of the interior of the car (cubic meters)	
n	Number of moles of air inside the interior of the car (moles)	
Т	Temperature inside of the car (Kelvin)	
R	Universal gas constant (8.314 Pa*m ³ /mol*K)	
MW	Molecular weight of air (kilograms/moles)	
Ср	The heat capacity of air at the temperature specified	
	(kilojoules/kilograms*Kelvin)	
m	Mass of air inside of the vehicle	
Q	Heat load inside of the vehicle (kilojoules)	
Α	Area	
L	Length	

xix

LIST OF APPENDICES

4

NO. TITLE

PAGE

A.1	The table below shows the comparison between		
	temperature and velocity for each of the cases for Seat A	133	
A.2	The table below shows the comparison between temperature		
	and velocity for each of the cases for Seat B	134	
A.3	The table below shows the comparison between temperatu	ire	
	and velocity for each of the cases for Seat C	135	
A.4	The table below shows the comparison between temperatu	ire	
	and velocity for each of the cases for Seat D	136	
A.5	The table below shows the comparison between temperature		
	and velocity for each of the cases for Seat E	137	
A.6	Data min, max and average for speed 1 (temperature)	138	
A.7	Data min, max and average for speed 1 (velocity)	138	
A.8	Data min, max and average for speed 2(temperature)	138	
A.9	Data min, max and average for speed 2(velocity)	139	
A.10	Data min, max and average for speed 3 (temperature)	139	
A.11	Data min, max and average for speed 3(velocity)	139	
A.12	Data min, max and average for speed 4(temperature)	140	
A.13	Data min, max and average for speed 4(velocity)	140	
В	Questionnaire	141	
B.1	Figure shows the thermal comfort rating for speed 1 for		
	different seats	145	
B.2	Figure shows the thermal comfort rating for speed 2 for		
	different seats	145	

NO.	TITL	E	PAGE
B.3		Figure shows the thermal comfort rating for speed 3 for	
		different seats	146
B.4		Figure shows the thermal comfort rating for speed 4 for	
		different seats	146
B.5		Figure shows airflow movement rate for "Seat A"at differen	nt
		speed	147
B.6		Figure shows airflow movement rate for "Seat B"at different	nt
		speed	147
B.7		Figure shows airflow movement rate for "Seat C"at different	nt
		speed	148
B.8		Figure shows airflow movement rate for "Seat D"at different	nt
		speed	148
B.9		Figure shows airflow movement rate for "Seat E"at differen	t
		speed	149
B.10		Thermal effect on passenger for "Seat A"	149
B.11		Thermal effect on passenger for "Seat B"	150
B.12		Thermal effect on passenger for "Seat C"	150
B.13		Thermal effect on passenger for "Seat D"	151
B.14		Thermal effect on passenger for "Seat E"	151

xxi

CHAPTER 1

INTRODUCTION

1.1 Research Background

The heating, ventilating and air conditioning system (HVAC) includes all of the components and controls responsible for keeping the interior of the car at a comfortable temperature. The HVAC system provides heating and cooling as needed and as where directed by the system controls. HVAC is not only important for comfort; it is also a key safety system for maintaining good visibility.

To many of us, of the term air conditioning connotes well-circulated blasts of cool, dehumidified air to take the sting out of our hot and humid climate. Without a doubt, air conditioning is one of the most significant inventions ever made in terms of driving comfort particularly for climates like us. However, few realize that air conditioning is a broad, all encompassing term and includes the capability to provide warm as well as cool air although the former has little benefit to us locally.

Another popular misconception in our local context is that air conditioning systems produce cold air. What they really do is produce the means to remove heat from the immediate environment rather than cold outright. Obviously, air conditioning systems(now sometimes also referred to as climate control systems) have great benefits for automotive applications, helping to cool and dehumidify the passenger cabin, as well as sapping it of the majority of airborne dust particles and odours.

Simply put, air conditioning is environmental control of a car's passenger cabin where temperature, humidity and circulation are maintained at the desired level with added benefits of cleanliness as well.

1.2 Objectives Of The Study

The objectives of this study are :

- a) To perform analysis for thermal comfort inside the model car as well as to investigate the occupant thermal comfort in order to support automotive climate control systems.
- b) To study the guidelines of optimizing HVAC system design based on the model that can be applied for the temperature and relative humidity in Malaysia.

2