

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AUTOMATED MAYNARD OPERATION SEQUENCE TECHNIQUE (MOST) WORK STUDY TECHNIQUE: CASE STUDY AT AEROSPACE MANUFACTURING COMPANY USING LEAN SIX SIGMA

This report submitted in accordance with requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management) with Honours.

by

NURULHUDA BINTI AHMAD

FACULTY OF MANUFACTURING ENGINEERING

2010

C Universiti Teknikal Malaysia Melaka

BORANG PENGESAHAN STATUS PROJEK SARJANA MUDA (PSM)

TAJUK. DEVELOPMENT OF AUTOMATED MAYNARD **OPERATION** SEQUENCE TECHNIQUE (MOST) WORK STUDY TECHNIQUE: CASE STUDY AT AEROSPACE MANUFACTURING COMPANY USING LEAN SIX SIGMA

SESI PENGAJIAN: 2008/2009

Saya NURULHUDA BINTI AHMAD

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM)dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hakmilik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan Laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ****** Sila tandakan (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD

TIDAK TERHAD

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat Tetap: D/A Ahmad Hashim, Jalan Kg. Rambutan, Kg.Rambutan, Kuala Nerang, Kedah

Cop Rasmi:

Tarikh:

Tarikh:

DECLARATION

I hereby, declared this Bachelor's Project entitled "Development of Automated Maynard Operation Sequence Technique (MOST) Work Study Technique: Case Study at Aerospace Manufacturing Company Using Lean Six Sigma" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NURULHUDA BINTI AHMAD
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with Honours. The members of the supervisory committee are as follow:

(Signature of Supervisor)

.....

(Official Stamp of Supervisor)

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with Honours. The members of the supervisory committee are as follow:

(Signature of Principal Supervisor)

.....

(Official Stamp of Principal Supervisor)

(Signature of Co-Supervisor)

.....

(Official Stamp of Co-Supervisor)

ABSTRACT

This project addresses the application of Maynard Operation Sequence Technique (MOST) in manufacturing industry. The case study has been conducted in order to improve the current workplace environment from the manual system into the automated system. Hence, the development of the MOST (Maynard Operation Sequence Technique) template required the application of Lean Six Sigma where the Lean tools and techniques combined together with Six Sigma approach to achieve effective result. The objectives of the project is to develop an automated MOST template and perform work study in order to identify various waste occurring at selected production area. For this project, the aerospace manufacturing company selected which is a strategic platform to conduct the case study because this company already implement the MOST (Maynard Operation Sequence Technique) but in manual way. Killing two birds with an arrow, this project is a stepping stone that will give advantages to the both side of student and company themselves.

ABSTRAK

Projek yang dijalankan ini menekan penggunaan Maynard Operation Sequence Technique (MOST) teknik dalam industri pembuatan. Projek ini dijalankan bertujuan bagi meningkat suasana tempat kerja daripada menggunakan sistem manual kepada Sekaligus, pembangunan MOST (Maynard Operation Sequence sistem automatik. Technique) template menerusi penggunaan konsep Lean Six Sigma di mana teknikteknik Lean bersama kombinasi Six Sigma dapat mencapat keputusan yang lebih berkesan dan bagus terutama kepada kajian kes yang dejalankan. Objektif projek ini ialah untuk membangunkan sistem automatik MOST (Maynard Operation Sequence Technique) template dan menjalankan kajian kes bagi mengkaji situasi yang membuktikan template baru membantu meningkatkan suasana kerja. Bagi mencapai objektif ini, sebuah kilang pembuatan untuk aero-angkasa dipilih sebagai sebuah platfom yang strategik kerana kilang pembuatan ini telah menjalankan kaedah MOST (Maynard Operation Sequence Technique) tetapi secara manual. Maka, projek ini dirangka sebagai batu loncatan yang membawa kebaikan kepada kedua-dua belah pihak iaitu pelajar dan juga syarikat.

DEDICATION

In the name of Allah S.W.T, Most Gracious, Most Merciful

A special dedicated to my beloved parents, En. Hj Ahmad bin Hashim and Puan Siti Halimah binti Shaari, whose care, unconditional love and sacrifice resulted in where I stand today. There are the best parents in the world – true blessings from God, indeed!!!

To my beloved family, whose sincerity, love, care and thoughtfulness that gave me the energy to complete this project. I love you all

To my supervisor, Puan Rohana binti Abdullah at Universiti Teknikal Malaysia Melaka (UTeM). Thank you for the assist, advice, consideration and help.

To my truly friend, Raihana Syahirah binti Abdullah for helping me so much to make my PSM is completing and working. Thank You so much.

And lastly to my entire lecturers, friends and other people who have encouraged, guided and inspired me throughout my education's journey.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim... In the name of Allah, Most Gracious, Most Merciful

All praises and thanks go to Allah Almighty and Alhamdulillah that finally I had been finished my PSM I successfully. Without His mercy and His compassion, this project simply would not possible. I can never be humble enough to show my gratitude to Him for everything He blessed me with.

I would like to take this opportunity to thank my PSM supervisor, Puan Rohana binti Abdullah for her guidance throughout the period of PSM is. I am much appreciating her assistance and all the valuable knowledge provided in helping me to complete documentation. She has been as supportive and flexible as she could be.

Otherwise, I would like to give special thanks for my beloved parents and family who have been giving me support and motivation throughout my project. On the family front, I would also like to thank to my sister, Raihana Syahirah binti Abdullah for helping me completes this project and bear with my difficulties throughout completing the project. She is a true friend, a very best life partner and a very fine human being.

Finally, I also express my deep gratitude to those who directly or indirectly helped me in completing this PSM project. This project is the result of the direct and indirect contributions of all these individuals. I am ever grateful to them.

Thank You Again, Wassalam.

TABLE OF CONTENTS

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	vi
List of Figures	vii
List of Abbreviations	viii
1.0 INTRODUCTION	1 - 5
1.1 Project Background	1 - 2
1.2 Problem Statements	2-3
1.3 Objective	3
1.4 Scope	3
1.5 Project Significance	4
1.6 Expected Output	4
1.7 Structure of Report	5
1.7 Conclusion	5
2.0 LITERATURE REVIEW	6 - 63
2.1 Introduction	6
2.1.1 Domain	6
2.1.2 Keywords	7
2.2 Lean Manufacturing	8 -10
2.2.1 The Relationship of Lean and Busines	s 10
2.2.2 Lean Principles	11 – 13
2.2.3 Wastes	13 – 14
2.2.4 Characteristic of Lean	15

2.2.5 Lean Tools and Techniques	15 -1 6
2.3 Lean Six Sigma	16 -1 7
2.3.1 Definition of Six Sigma	18
2.3.1.1 DPMO (Defect Per Million Opportunities)	18 -1 9
2.3.2 Six Sigma Philosophy	19
2.3.3 Six Sigma Methodology	19 – 21
2.3.4 Six Sigma Tools	21
2.3.4.1 Pareto Diagram	21 – 22
2.3.5 Lean Six Sigma Principles	22
2.3.6 Comparison of Lean and Six Sigma	23 - 24
2.3.7 How Lean and Six Sigma Complementary to each	24 - 25
Other	
2.3.8 Lean Six Sigma Advantages	25
2.4 Introduction to Productivity	26
2.4.1 Concept of Productivity	26 - 27
2.4.2 Definition of Productivity	27 -28
2.4.3 Measuring Productivity	28 - 31
2.5 Factor Influencing Productivity	31
2.6 Improvement of Productivity	31 - 32
2.7 Labor Productivity	33
2.8 Overall Labor Effectiveness	33 - 34
2.8.1 Workforce Performance Measurement	35
2.8.1.1 Availability	35
2.8.1.2 Performance	35 - 36
2.8.1.3 Quality	36
2.8.2 Advantages of OLE application	36
2.8.3 Impact of OLE	37
2.9 Work Study and Measurement	37
2.9.1 Method Study	38 - 40
2.9.2 Principles of Motion Economy	40 - 43
2.10 Work Measurement	43 - 45

2.10.1 Direct Time Study	45
2.10.1.1 Performance Rating	46 - 47
2.10.1.2 Allowances	47
2.10.2 Standard Time	48
2.10.3 Predetermined Time Standards (PTS)	48 – 49
2.11 MOST Work Measurement Techniques	50
2.11.1 Concepts of MOST	50 - 51
2.11.2 Advantages of MOST	50 - 51
2.11.3 Sequence Method	51
2.11.3.1 General Move Sequence Model	52 - 53
2.11.3.2 Controlled Move Sequence Model	54
2.11.3.3 Tool Use Sequence Model	55
2.11.4 Accuracy	55
2.12 Lean Six Sigma: Workplace Measurement	56 - 57
2.13 System Development Model	57 - 58
2.14 Current Study on MOST and Lean Six Sigma	58
2.14.1 Case Study 1: Lithonia Lighten Workload, Improve	58 - 59
Productivity (H.B Maynard and Company Inc)	
2.14.2 Case Study 2: Six Sigma Case Study at Manufacturing	59 - 60
Unit (Desai & Shrivastava, 2008)	
2.14.3 Case Study 3: Improving Computer Manufacturing	61
Management through Lean Six Sigma and PHM (Niu	
et al., 2010)	
2.14.4 Case Study 4: Using Simulation with Design for Six	62 - 63
Sigma in a Server Manufacturing Environment	
(Ramakrishnan et al. 2008)	
2.15 Summary	63
3.0 RESEARCH METHODOLOGY	64 - 77
3.1 Introduction	64
3.2 Planning of Study	64 - 65

3.3 Project Methodology	66 - 67	
3.3.1 Phase 1 : Define	67	
3.3.2 Phase 2 : Measure	68	
3.3.2.1 Time Taken	68	
3.3.2.2 Accuracy	68	
3.3.2.3 Speed of data process	69	
3.3.3 Phase 3: Analysis	69	
3.3.4 Phase 4 : Improve	69	
3.3.5 Phase 5 : Control	70	
3.4 Approach Used for Template/	70	
System Development		
3.4.1 Requirement Definition	71	
3.4.2 System and Software Design	71	
3.4.3 Implementation and Unit Testing	71	
3.4.4 Integration and System Testing	71	
3.5 Problem Statement Identification	71 – 72	
3.6 Data Collection	72	
3.6.1 Primary Source	72 – 73	
3.6.2 Secondary Sources	73	
3.7 Data Analysis	73	
3.7.1 Quality of Data	74	
3.8 The Synchronization of Objectives and Methodology	74	
3.9 Conceptual Design	74 – 75	
3.10 Project Schedule and Milestone	76 – 77	
3.11 Summary	77	
4.0 COMPANY PROFILE	78 – 84	
4.1 Company Background	78	
4.1.1 History Background		
4.1.2 Group Structure		
4.2 Board of Director	80	
4.2 Board of Director	(

4.3 Company Vision and Mission	80
4.3.1 Vision	80
4.3.2 Mission	80
4.4 Company Location	81
4.5 CTRM Aero-Composite	81 - 82
(CTRM-AC)	
4.6 Product and Process Involve	83
4.6.1 A380	83
4.6.2 A320 and A321	83 - 84
4.6.3 Goodrich V2500	84
5.0 AUTOMATE MAYNARD OPERATION	85 - 96
SEQUENCE TECHNIQUE (MOST) TEMPLATE	
DEVELOPMENT	
5.1 Introduction	85
5.2 Template Architecture	85 - 86
5.3 Conceptual Design	86 - 89
5.4 Design on Automated MOST Template	90
5.4.1 User Interface Design	90
5.4.1.1 Navigation Design	90
5.4.1.2 Input Design Interface	91 - 92
5.4.1.3 Output Design Interface	93 - 95
5.4.1.4 Data Store Design	96
5.5 Conclusion	96
6.0 RESULT AND DISCUSSION	97 – 134
6.1 Introduction	97
6.2 Goodrich Phase II Process	97 – 98
6.3 Analyzing the Case Study and MOST Template Using	98
Six Sigma DMAIC Approach	
6.3.1 Stage 1 st : DEFINE	98

6.3.1.1 Layup Process	98 - 101
6.3.2 Stage 2 nd : MEASURE	101
6.3.2.1 Collecting Data	102
6.3.2.2 Result for Cone Fairing (Layup)	103
6.3.2.3 Result for Torque Ring (Layup)	104
6.4 Overall Labor Effectiveness (OLE)	105
6.4.1 OLE Calculation for Cone Fairing Layup	105 – 108
6.4.2 OLE Comparison	108 – 110
6.4.2.1 Comparison Between the Current MOST template	110 – 116
and New Automated MOST Template	
6.4.3 Stage 3 rd : ANALYZE	116
6.4.3.1 Analyze Automated MOST Template	116 – 122
6.4.3.2 Developing Standard Time	123
6.4.3.3 Data Calculation	123 – 133
6.4.4 Stage 4 th : IMPROVE	133 – 134
6.4.5 Stage 5 th : CONTROL	134
6.5 Conclusion	134
7.0 CONCLUSION AND RECOMMENDATION	135 - 139
7.1 Introduction	135
7.1.1 Overview for Result	135 – 136
7.1.2 Observation on SWOT Analysis	136 – 137
7.1.3 Project Constraint	137
7.2 Contribution of Study	137 – 138
7.3 Recommendation for Improvement	138
7.3.1 Recommendation for the Project	138
7.3.2 Recommendation for Future Work	139
7.4 Conclusion	139

REFERENCES

140 - 144

APPENDICES

- A Gantt Chart
- B User Manual
- C Data of Case Study
- D OLE Calculation for Torque Ring
- E Definition of Index for Action Distance (A)
- F Definition of Index for Action Distance (B)
- G Definition of Index for Action Distance (G)
- H Definition of Index for Action Distance (P)

LIST OF TABLES

1.1	Structure of Report	5
2.1	The Waste of Software Development	14
2.2	Comparing between Lean and Six Sigma	23
2.3	Comparing Lean and Six Sigma	24
2.4	Why Lean and Six Sigma need each other	24
2.5	Overview of main productivity measures	30
2.6	Lists of examples for different productivity	30
	measures	
2.7	Examples of partial productivity measures	30
2.8	Factors influencing productivity	31
2.9	Basic approach of method study	39
2.10	Classification of movement	40
2.11	Example of motion economy principles	41
2.12	Therbligs Chart	42
2.13	Method of work measurement	44
2.14	MTM table for GET and Place motion	49
2.15	General Move Sequence Model	53
2.16	Activity Define	53
2.17	Parameters for Control Move	54
2.18	Result of Lithonia Case	59
2.19	DMAIC Phases and the Role of Simulation	62
3.1	Differences of time study	68
3.2	The synchronization of objectives and	74
	methodologies	
3.3	Milestone for PSM 1 & PSM 2	76

4.1	CTRM-AC Management	82
5.1	Type of Inputs in Data Entry Interface	92
5.2	Data Store Dictionary	96
6.1	Working procedure of Layup for Cone Fairing and Torque Ring	99
6.2	Production Data for Cone Fairing Layup	106
6.3	Support Variable Data for Cone Fairing	107
6.4	OLE Factor for Cone Fairing Layup	107
6.5	Comparison of OLE	108
6.6	World Class Standard for OLE	109
6.7	Example of comparison of activity (Torque	111
	Ring)	
6.8	Comparison of time study	114
6.9	Necessary action taken for completing the template.	114
6.10	Template (Data Analysis) Analysis	118
6.11	Template Analysis (Data Store)	120
6.12	Template analysis	122
6.13	General Move Sequences	124
6.14	Controlled Move Sequences	125
6.15	Tool Move Sequences	126
6.16	Example of activity sequence A16 B6 G3 A16 B6 P6 A1	127

7.1	SWOT analysis for MOST Template	136
-----	---------------------------------	-----

LIST OF FIGURES

2.1	Three pronged of Lean approach	9
2.2	Lean from the perspective of the business	10
	framework	
2.3	Principles of Lean	11
2.4	Lean Framework	12
2.5	Correlation of value, cost and waste	12
2.6	Seven type of wastes	13
2.7	House of Lean	16
2.8	History Lean and Six Sigma	17
2.9	Six Sigma keys methodologies	20
2.10	Pareto Diagram	22
2.11	Concept of productivity measurement	29
2.12	Productivity Improvement	33
2.13	OLE Platforms	34
2.14	Component of Work Study	37
2.15	Workplace Measurement Process	56
2.16	DMAIC Approach	57
2.17	Waterfall Model or Software Life Cycle	57
2.18	DMAIC Methodology	60
3.1	MOST Work Study Process Flow	65
3.2	Project Methodology	66
3.3	Waterfall Model or Software Life Cycle	70
4.1	Group Structure	79
4.2	Board of Director	80
4.3	Location of CTRM	81
4.4	Organization Structure for CTRM-AC Sdn Bhd	82

4.5	A 380 Airbus- The Biggest Aircraft in the World	83
4.6	A 320 Airbus Component	84
4.7	Goodrich V2	84
5.1	Overview of Template Design	86
5.2	Navigation Design for Template Design	90
5.3	Data Entry Input Interface	91
5.4	Data Store Output Interface	93
5.5	Summary Output Interface	94
5.6	Histogram Output Interface	95
5.7	Pareto Diagram Output Interface	95
6.1	General Process Flow in Clean Room	99
6.2	Example of MOST analysis for Cone Fairing	103
	(Layup)	
6.3	Example of MOST analysis for Torque Ring	104
	(Layup)	
6.4	Comparison of OLE	108
6.5	Aerospace Company OLE	109
6.6	Manual MOST vs Automated MOST	113
6.7	Data Entry for automated MOST template	117
6.8	Data Store for Automated MOST template	119
6.9	Pareto Diagram	122
6.10	Summary of Developing a Standard Time	123
6.11	ILO Personal and Fatigue Allowance	131

LIST OF ABBREVIATIONS

AC	-	Aero-Composite
DMADV	-	Design, Measure, Analyze, Design, Verify
DMAIC	-	Define, Measure, Analyze, Improve and Control
DPMO	-	Defect Per Million Opportunities
FLELP	-	Fixed Leading Edge Lower Panels
FMEA	-	Failure Mode and Effect Analysis
IOFLE	-	Inboard Outer Fixed Leading Edge
MOST	-	Maynard Operation sequence Technique
MTM	-	Method-Time Measurement
MTM1	-	Man-To-Machine (for 1 machine)
MTM2	-	Man-To-Machine (for 2 machine)
NT	-	Normal Time
NVA	-	Non Value Added
OLE	-	Overall Labor Effectiveness
PDCA	-	Plan-Do-Check-Act
PHM	-	Prognostic Health Management
PTS	-	Predetermine Time Standard
R&D	-	Research & Development
ROI	-	Return of Investment
RUL	-	Remaining Health Management
SIPOC	-	Supplier, Input, Process, Output and Customer
SMED	-	Single-Minute-Exchange-Die
SPC	-	Statistical Process Control
ST	-	Standard Time
TMU	-	Time Measurement Unit
TPS	-	Toyota Production System
UK	-	United Kingdom
USA	-	United State of America

UTeM	-	Universiti Teknikal Malaysia Melaka
VA	-	Value added activities
σ	-	Sigma

C Universiti Teknikal Malaysia Melaka

CHAPTER 1 INTRODUCTION

Chapter one, the introduction of this report, describes the motivation for the project. The problem statements are also stated. The objectives, scope of the project, project significance and the expected output of this project are also presented in this chapter.

1.1 Project Background

This study addressed the application of lean six sigma concepts to the productivity and performance in the aerospace manufacturing industry. After World War II, Japan industry especially manufacturing industries had desperately looking to the new idea and technology to develop back their economy. Following by that, Thiichi Ohno and Shigeo Shingo introduced the concept of the Toyota Production System (TPS) which today also known as Lean Manufacturing. The main idea of this concept is eliminating waste. Technically, waste is anything that does not add any value to the activity. Taiichi Ohno initially has describe seven type of waste include overproduction, waiting, transportation, high inventory, unnecessary motion, over-processing, defective.

At that time, Europe and United States leave too far from what the Japanese has developed. In that case, European and American come to Japan for study about what the Japanese has implemented to increase their economy. As matter of fact, in 1990 James Womack wrote a book called "The Machine That Changed The World". In his book, Womack has straightforward account of the history of automobile manufacturing combined with the study of Japanese, European, and American automotive assembly plants.

Lean Six Sigma is a highly disciplined process that helps company to focus on developing and delivering near-perfect products and services. The word is a statistical term that measures how far a given process deviates from perfection. The central idea behind Six Sigma is that if we can measure how many "defects" have in a process, which can systematically figure out how to eliminate them and get as close to "zero defects" as possible.

Manufacturing industries nowadays is extremely interested with the term of Lean Six Sigma where the power of combining these two tools are belief can help to increase the company performance and productivity. The manufacturers wish to survive and grow in this industries are faced with the ultimate need to reduce cost. In fact, the flow of the process planning need to be emphasized because at this stage of process contributes a lot for company productivity. The "Production without waste" only can be realized by taking consideration in term of increased the Value Added (VA) and eliminate Non-Value Added (NVA) of the activities.

1.2 Problem Statements

Recently, this aerospace manufacturing company has developed the team to perform the work study for the critical operation. However, they have used the traditional method of taking the data using the stop watch. Moreover, the data entry process was done manually which was very tidiness and took a long time to complete. To improve the data accuracy, the team started to use Maynard Operation Sequence Technique (MOST) to review the work study data. The application of Maynard Operation Sequence Technique (MOST) technique has successfully improved the data accuracy but the data entry process into Maynard Operation Sequence Technique (MOST) Excel template was still very tedious and time consuming. Moreover, there was also the possibility of doing