

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Analysis of Plastic Flow in Two Plate Injection Mould

Thesis submitted in accordance with the partial requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Manufacturing Process)

By

Norman Bin Omar

Faculty of Manufacturing Engineering May 2007

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: ANALYSIS OF PLASTIC FLOW IN TWO PLATE INJECTION MOULD

SESI PENGAJIAN: 2/2006-2007

Saya

NORMAN BIN OMAR

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

i. Sha candahan (1)	
	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
√ TIDAK TERI	AD
- A	Disahkan oleh:
(TANDATANĠA	PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap: No 105, Lorong Murn Taman Desa Murni, S 13800 Butterworth, I	g Dua, Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka
Tarikh: 15/5/07	Tarikh: 14/5/07
disertasi bagi pengajian seca ** Jika tesis ini SULIT atau TE	esis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau a kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM HAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaar abⓒ Universiti Teknikal Malaysia Melakaan sebagai SULIT atau TERHAD.

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirements for the Bachelor of Manufacturing Engineering (Manufacturing Process). The members of the supervisory committee are as follow:

Kons

Main Supervisor (Official Stamp & Date) ROSIDAH BINTI JAAFAR Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declare this thesis entitled

"Analysis of Plastic Flow in Two Plate Injection Mould" is the result of my own research except as cited in the references.

Signature

M.

Author's Name

Norman bin Omar

Date

10 May 2007

C Universiti Teknikal Malaysia Melaka

ABSTRACT

This thesis is focused on the analysis of plastic flow in two plate injection mould. Compact Disc Cases (top and bottom) are designed with two cavities as the plastic part in the two plate injection mould. Solidworks software is used to design the plastic part and Rhinocheros is used for meshing the surfaces of plastic part. Meanwhile at the stage of analysis, Moldex Software is used to perform the analysis of filling and packing. This thesis will discuss the flow of molten plastics inside the injection mould. The analysis begins at the origin of the flow and includes all major flow channels such as barrel, nozzle, sprue, runners and gates, until the two cavities are completely filled. In the analysis, plastic flow behaviour is studied together with parameters setting in plastic injection moulding. Based on this analysis, improvement has been made to the part design and feed system in the mould. This includes the location of gate at the part design, size of sprue, runners and gates. From the analysis also, Moldex Software helps to determine the part defect that might occurred during plastic injection moulding process such as short shot, unequal filling, over filling, welding line and others. From that, the optimum parameters setting are selected in order to get a quality plastic part. So, this thesis will explain the plastic flow analysis clearly.

ABSTRAK

Tesis ini adalah tertumpu kepada panganalisaan proses pengaliran plastik di dalam dua plat acuan suntikan. Bekas simpanan Cakera Padat (atas dan bawah) di rekabentuk dengan 2 rongga acuan sebagai produk plastik dalam dua plat acuan suntikan. Perisian Solidwork digunakan untuk merekabentuk produk plastik dan Rhinoceros digunakan untuk mesh permukaan produk plastik. Manakala di peringkat analisa, perisian Moldex digunakan untuk membuat analisa pengisian dan pemadatan. Tesis ini akan membincangkan pengaliran bahan plastik cair di dalam acuan suntikan. Analisis bermula dari permulaan proses pengaliran plastik dan merangkumi keseluruhan saluran pengaliran proses di mesin sehinggalah masuk sepenuhnya ke dalam dua rongga acuan. Dalam analisa itu, sifat-sifat pengaliran plastik dikaji bersama-sama dengan penetapan parameter-parameter dalam pengacuanan suntikan plastik. Berdasarkan analisa ini, pembaikan dibuat kepada rekabentuk produk dan sistem masukan bahan dalam acuan. Ini termasuk kedudukan laluan masuk pada rekabentuk produk, saiz penghantar, dan saiz laluan masuk. Daripada analisa ini juga, perisian Moldex membantu mengenalpasti kecacatan produk yang mungkin berlaku dalam proses pengacuanan suntikan plastik seperti suntikan tidak lengkap, pengisian tidak sekata, lebihan pengisian, garisan kimpal dan lain-lain. Lanjutan dari itu, penetapan parameter optimum dipilih untuk mendapatkan produk plastik yang berkualiti. Oleh itu, tesis ini akan menerangkan analisa pengaliran plastik tersebut dengan jelas.

DEDICATION

Especially dedicated to my beloved family especially to; My Mother (Norizan Binti Hussain), My Father (Omar Bin Shafii)

and

My Sister (Normazira Binti Omar)

whose very concern, understanding, supporting and patient. Also to special person; Noorlia Bt Mohd Noor.... Thanks for everything. The work and success will never be achieved without all of you.....

ACKNOWLEDGMENTS

In the name of Allah, the most gracious, the most merciful. Alhamdulillah and grateful with the permission from Allah I have done my *Projek Sarjana Muda* activities. Firstly, I would like to thanks at Technical University of Malaysia Malacca for giving the cooperation to done this research and especially to all staff in faculty of manufacturing engineering. Special thanks to the important person, my supervisor whose guides me in the thesis and project preparation, Puan Rosidah Binti Jaafar. The person that gave me a lot of advices and guidelines to make sure the project can be performed smoothly without any problem and produce the best result.

Also I would like to wish my greatest grateful especially to my family and my close friends for all their support. Lastly to all my friends and all lecturers especially my second project assessor Professor Dr. Hj Md Dan Bin Hj Md Palil. Thank you for the support that all of you shown to me. May Allah bless all of you.

TABLE OF CONTENTS

ABS	TRAC	Τ	i
DED	DICAT	ION	iii
ACK	KNOW	LEDGEMENT	iv
TAB	BLE OI	CONTENTS	v
LIST	Г ОF Т	ABLES	x
LIST	Г OF F	IGURE	xii
LIST	Г OF A	BBREVIATIONS	xvi
LIST	r of u	NIT	xvii
1.0	INT	RODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Objective	4
	1.4	Scope	4
2.0	LIT	ERATURE REVIEW	
	2.1	Introduction	5
	2.2	Injection Moulding Machine	6
		2.2.1 Basic Principle of Injection Mou	lding 9
		2.2.2 Injection Moulding Equipment	10
		2.2.3 Injection Moulding Cycle Proces	s 14
		2.2.4 Injection Moulding Process	15
		2.2.5 Injection Moulding Machine Cor	siderations 20
		2.2.6 Advantage of Injection Moulding	21
		2.2.7 Disadvantage of Injection Mould	ing 21
	2.3	Plastic Material	22
		2.3.1 Characteristics of Plastic Materia	1 22

2.4	Therr	noplastics			23
	2.4.1	Polysty	rene (PS)		25
		2.4.1.1	Type of P	olystyrene	29
	2.4.2	General	l purpose Po	lystyrene	29
		2.4.2.1	Properties	3	29
		2.4.2.2	Colouring	5	31
		2.4.2.3	Finishing		31
		2.4.2.4	Applicatio	on	31
2.5	Moule	ł			32
	2.5.1	Cavity a	and Core		33
	2.5.2	Sprue			34
	2.5.3	Runner			36
		2.5.3.1	Cool Rum	ner	38
			2.5.3.1.1	Type of Cold Runner Mould	39
		2.5.3.2	Hot Runne	er	40
			2.5.3.2.1	Type of Hot Runner	41
	2.5.4	Gate			42
		2.5.4.1	Gate Desig	'n	43
			2.5.4.1.1	Submarine or Tunnel Gate	45
			2.5.4.1.2	Pinpoint or Restricted Gate	45
			2.5.4.1.3	Fan or Edge Gate	46
			2.5.4.1.4	Tab Gate	46
			2.5.4.1.5	Sprue Gate	47
			2.5.4.1.6	Flash Gate	47
			2.5.4.1.7	External Ring Gate	48
			2.5.4.1.8	Internal Ring Gate	48
		2.5.4.2	Dimension	and Position of Gates	49
	2.5.5	Cooling	System		49
	2.5.6	Ejection	System		51
2.6	Two P	late Moul	d		52
	2.6.1	Advanta	1		53
	2.6.2	Disadva	ntages		53

2.7	Param	neter Setting/Processing Condition	54
2.8	Shrinkage		57
2.9	Quality Problem		58
	2.9.1	Plastic/Polymer Quality	58
	2.9.2	Mould /Part Design	59
	2.9.3	Machining Specification and Process Setting	61
2.10	Defec	t of Plastic Part and Solve Technique	62

3.0 METHODOLOGY

3.1	Introd	luction	66
3.2	Softw	are Used	68
	3.2.1	SolidWork	68
	3.2.2	Rhinoceros	69
	3.2.3	Moldex	69
3.3	Projec	t Flow Chart for PSM 1	71
3.4	Flow	Chart of Project (CD Cases)	72
3.5	3D De	esign for CD Cases	73
	3.5.1	Detail drawing for CD Cases (top)	74
	3.5.2	Detail drawing for CD Cases (bottom)	75
3.6	Transf	ferring File from SolidWork to Rhinoceros Software	76
3.7	Meshi	ng	76
3.8	Design	n of Gate System	78
	3.8.1	Rectangular Edge/Side gate	81
	3.8.2	Design for Rectangular Edge/Side gate	81
3.9	Design	n of Sprue System	82
	3.9.1	Sprue Puller	82
3.10	Desigr	n of Runner	83
3.11	Transf	er File to Moldex	85
3.12	Materi	al Selection	85
3.13	Set Pro	ocessing Condition	85
3.14	Run Analysis		

4.0 ANALYSIS PROCEDURE

	4.1	Experiment method	87
		4.1.1 Solid Work	87
		4.1.2 Rhinoceros	88
		4.1.3 Moldex	93
	4.2	Consideration Before and During Analysis	98
5.0	RES	ULT	
	5.1	Experiment Result	99
		511 A.1 D. 1	

	5.1.1	Analys	is Result	98
		5.1.1.1	Filling Result	102
		5.1.1.2	Packing	104
	5.1.2	Feeding	g System	105
	5.1.3	Parame	eter Setting	108
		5.1.3.1	Material and Machine Used	108
		5.1.3.2	Process Parameter	110
5.2	Result	t Summar	ry	112

6.0 **DISCUSSION**

6.1	Result	t Discussion	113
	6.1.1	Feeding System and Parameter Setting	113
	6.1.2	Filling analysis	116
		6.1.2.1 Filling Result6.1.2.2 Summary for filling Analysis	117 126
	6.1.3	Packing analysis	127
	6.1.4	Comparison between analyses	129
	6.1.5	Improvement of analysis	130

7.0 CONCLUSION

7.1	Project Conclusion	133
7.2	Suggestion	133

REFERENCE

APPENDICES

- A Packing result
- B Failure experiment
- C Project Gantt Chart

139

LIST OF TABLES

NO	TITLE	PAGES
2.1	The Depth of Screw at Feed Section and Metering Section	12
2.2	Screw Speed Related to Material	13
2.3	Injection Moulding Machine Considerations	20
2.4	Polystyrene Properties	26
2.5	The Physical Properties for GPPS	30
2.6	Resistance to Chemical for GPPS Material	30
2.7	Mechanical and Thermal Properties	30
2.8	Processing Condition GPPS	56
2.9	Shrinkage of Various materials	57
2.10	Material Related Problem	59
2.11	Plastic Defect and Improvement	62
3.1	Solution Method for Figure 3.17	79
3.2	Runner Diameters for Some Common Materials	84
3.3	Parameter Adjusting	86
5.1	Data Result	101
5.2	Feeding System	105
5.3	Meshing Result	107
5.4	Material Properties	108
5.5	Mould Parameter Setting	110
5.6	Material Parameter Setting	110
5.7	Flow Rate Setting	111
5.8	Packing Parameter Setting	111
5.9	Injection Parameter Setting	112

6.1	The Comparison between Cold Runner and Hot Runner	114
6.2	Comparison of Parameter Setting	115
6.3	Comparison between Analyses	129

LIST OF FIGURES

NO

TITLE

PAGES

2.1	Injection Moulding Machine	7
2.2	Screw Injection Moulding Machine	8
2.3	Piston Injection Moulding Machine	8
2.4	Screw-preplasticizer Injection Moulding Machine	9
2.5	A Geared Hydraulic Pump	13
2.6	Basic Element of Injection Moulding Machine	14
2.7	Sequence for Cycle Process	14
2.8	Sequence for Screw Process	16
2.9	Clamping Design	17
2.10	A Single Toggle Clamped in the Locked Position	18
2.11	A Double Toggle Clamped in the Locked Position	18
2.12	A Basic Hydraulic Clamp System	18
2.13	Polymerization Process	25
2.14	A Resin Identification Code	25
2.15	A Basic Mould System	32
2.16	A Basic Cavity and Core	34
2.17	Example of Cavity and Core	34
2.18	A Basic Sprue System	35
2.19	Sprue Design	35
2.20	Cross Section of Popular High Conductivity Sprue Bushing	36
2.21	Runner	36
2.22	Evenly Distributed Runners	37
2.23	Common Runner Cross Sections	37
2.24	A Two Plate Cold Runner Mould	39
2.25	A Three Plate Cold Runner Mould	39
2.26	A Hot Runner Mould	41
2.27	An Insulated Hot Runner	42

C Universiti Teknikal Malaysia Melaka X11

2.28	2.28 Famous Type of Gate			
2.29	Submarine or Tunnel Gate			
2.30	Pinpoint or Restricted Gate			
2.31				
2.32	Tab Gate	46		
2.33	Sprue Gate	47		
2.34	Flash Gate	47		
2.35	5 External Ring Gate			
2.36	Internal Ring Gate	48		
2.37	Multi Moulding Cooling System	50		
2.38	Ejection System	51		
2.39	Two Plate Mould	52		
2.40	Two Plate Mould Process	52		
3.1	Traditional Design Flow Chart	67		
3.2	Flow Chart for PSM 1	71		
3.3	Project Flow Chart	72		
3.4	CD Cases (top)	73		
3.5	CD Cases (bottom)	73		
3.6	Inject Location at the Top Side, Edge and Side for CD Cases (top)			
3.7	Inject Location at the Top Side, Edge and Side for CD Cases (top) Inject Location at the Edge for CD Cases (bottom)			
3.8	Inject Location at the Side for CD Cases (bottom)	80		
3.9	Edge/Side Gate	81		
3.10	Sprue Puller Design	83		
3.11	Runner Design	83		
4.1	Part Design using Solidwork	88		
4.2	Transfer Part Design to Rhinoceros	88		
4.3	Meshing Process	89		
4.4	Aspect Ratio for Meshing Process	89		
4.5	Editing Part to One Layer	90		
4.6	Part Thickness	90		

4.7	Feeding System Design	91		
4.8	Assign Diameter for Sprue, Runner and Gate	92		
4.9	Detail View for Feeding System			
4.10	Create a New Project in Moldex Software	93		
4.11	Project Type Setting	93		
4.12	Application Type Setting	94		
4.13	Solver Setting	94		
4.14	Other Setting			
4.15	Message of Activating a New Run	95		
4.16	Importing the Mesh File CD Cases.msh	95		
4.17	Overview of Mesh Model	95		
4.18	Moldex3D Process Wizard			
4.19	Parameter Setting	96		
4.20	Computation Parameter	97		
4.21	Running Job	97		
5.1	Design of Feeding System Used to Perform Experiment	100		
5.2	Filling Result	102		
5.3	Packing Result	104		
5.4	Detail Drawing for Succeeds Feeding System	106		
5.5	Feeding Design			
5.6	Machine Used	109		
6.1	The Animation Result of Filling Process.	116		
6.2	The Animation Result of the 25% Filling Stage	117		
6.3	The Animation Result of the 35% Filling Stage	118		
6.4	The Animation Result of the 75% Filling Stage	119		
6.5	The Animation Result of the 90% Filling Stage	119		
6.6	The Animation Result of the 100% Filling Stage			
6.7	The Graph Result of 100% Filling Melt Front Time Process	120		
6.8	The Result of the Filling Pressure	121		
6.9	The Result of the Filling Center Temperature	122		

The Result of the Filling Average Temperature	123
The Result of the Filling Shear Stress	124
The Result of the Filling Density	125
The Result of the Packing	127
Problem during Transfer to Moldex	131
Parameter Failure	132
	The Result of the Filling Shear Stress The Result of the Filling Density The Result of the Packing Problem during Transfer to Moldex

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadiene Styrene
CAD	-	Computer Aided Design
CAE	-	Computer Aided Engineering
CAM	-	Computer Aided Manufacturing
CAS	100	Computer Aided System
CD	-	Compact Disc
Dc	-	Dimension of cavity
Dp	-	Moulded part dimension
GPPS	-	General Purpose Polystyrene
HDPE	-	High Density Polyethylene
LDPE	-	Low density Polyethylene
Max	-	Maximum
RHINO	-	Rhinoceros
RPM	-	Rotation per Minutes
PA6.6	-	Polyamide
PBT	-	Polybutyleneterephthalate
PC	-	Polycarbonate
PE	-	Polyethylene
PES	-	Polyethelenesepropionate
PMMA	-	Polyoxymethylene
PP	-	Polypropylene
PS	-	Polystyrene
PSM	-	Projek Sarjana Muda
SAN	-	Styreneacetalnitrat
sec		Second
3D	-	Three dimensional
2D	-	Two dimensional

LIST OF UNIT

-	Degree of Celsius
-	Centimetre cubic
-	Centimetre cubic per second
-	Gram
-	Gram per centimetre cubic
-	Kilo Newton
-	Millimetres
-	Mega Pascal
-	Shrinkage value
-	Second
-	Percent

CHAPTER 1

INTRODUCTION

1.1 Project Background

This thesis is base to determine the plastic process flow. Plastic is a material that can produce many shapes that can be used by human in routine life. All of plastic products are produce from various type of operation or process. All of product produces with different type of plastic material depend to needed. Plastics are divided into two distinct groups: thermoplastics and thermosets.

Plastics can be moulded into various forms and hardened for commercial use. Plastic is perfect for this modern age. It is light, strong, easily moulded and durable. Although plastics are thought of as a modern invention, there have always been "natural polymers" such as amber, tortoise shells and animal horns. These materials behaved very much like today's manufactured plastics and were often used similar to the way manufactured plastics are currently applied.^[1]

The plastic product can make from the several processes like injection moulding, blow moulding, compression moulding, film insert moulding, gas assist moulding, rotational moulding, structural foam moulding, extrusion and thermoforming. This thesis will explain and study more about injection moulding. Injection moulding is a process in which the plastic material is injected into a mould forming a plastic product. Injection moulding is a manufacturing technique for making parts from thermoplastic material. The solid plastic material is fed into an injection moulding machine, heated and then pressed into the mould. In injection

C Universiti Teknikal Malaysia Melaka

moulding, plastic pellets or granules are fed from a hopper into a heating chamber. A plunger or screw pushes the plastic through the heating chamber, where the material is softened into a fluid state. At the end of this chamber, the resin is forced into a cooled, closed mould. Once the plastic cools to a solid state, the mould opens and the finished part is ejected. ^[1]

Injection moulding is very widely used for manufacturing a variety of parts, from the smallest component to entire body panel. It is the most common method of production, with some commonly made items including bottle caps and outdoor furniture. Plastic moulding products can be seen everywhere such as plastic tubes, grips, toys, bottles, cases, accessories, kitchen utensils and a lot more. The mould is made by a mould maker from tool steel, usually either steel or aluminium, and precision-machined to form the features of the desired part. Mould is used to produce desire product that we needed. Many elements are involved in mould such as feeding, cooling and injector system. In modern technology, CAD software can be used to design mould and after that perfume machining raw material to produce complete mould. Feeding system is important element for plastic flow in injection mould. All of this will be explain detail inside this project. In this thesis, the analysis is concentrate for plastic flow in two plate injection mould.