"Saya akui bahawa saya telah membaca karya ini dan pada pandangan saya karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Struktur & Bahan)"

> Tandatangan Nama Penyelia

Tarikh

: MR. WAN MOHD FARID BIN WAN MOHAMAD : MEI 2006

A STUDY ON END-QUENCH PROCESS OF CARBON STEEL, LOW ALLOY STEEL AND STAINLESS STEEL

i

YOONG THIAM LONG

Laporan ini diserahkan kepada Fakulti Kejuruteraan Mekanikal sebagai memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraaan Mekanikal (Struktur & Bahan)

> Fakulti Kejuruteraan Mekanikal Kolej Universiti Teknikal Kebangsaaan Malaysia

> > MEI 2006

C Universiti Teknikal Malaysia Melaka

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya"

11

. . . .

Nama Penulis : YOONG THIAM LONG Tarikh : MEI 2006

1

Tandatangan

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Since the thesis of studying the Jominy end-quenching process based on carbon steel, low alloy steel and stainless steel was appeared in 2005, many lecturers, friends and reviews have provided a helpful feedback and suggestion in developing this thesis. I wish to thank to:

- 1. Mr. Wan Mohd Farid Bin Wan Mohamad, supervisor (FKM) Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM).
- 2. Mr. Ahmad Rivai, lecturer (FKM) Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM).
- 3. Mr. Mahader Bin Muhamad, technician (FKM) Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM).
- 4. Mr. Azhar, technician (FKP) Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM).

Finally, I need to thank again for the people above due to their assistance and cooperation and also my beloved family to success my thesis.

iii

ABSTRACT

The purpose of this study was identifying the effect of quenching process bases on their hardenability, microstructure and distortion profile of three different steels. Three experiments have carried out involving hardness test, distortion examination and microstructure analyze. Where the samples hardness profile across the bars uniformly show hardness decrease towards the center, which was due to the decrease in the cooling rate towards the center. Sample with fast cooling rate, the transformation from austenite to pearlite cannot occur and the new phase obtained by quenching was called martensite. Martensite was a supersaturated metastable phase and has body centered tetragonal lettice (bct) instead of bcc. After sample was quenched, it was usually very hard and strong but brittle. Martensite looks needle-like under microscope due to its fine lamellar structure. Therefore the quenched end with high cooling rate will have high hardness profile. The microstructural changes from martensite at the quenched end to ferritepearlite where far from quenched end were depend to the cooling rate. Each quench medium has different cooling rate, therefore different quench medium will showed a different results to the samples.

ABSTRAK

Tujuan bagi kajian ini adalah untuk mengenalpastikan kesan proses penyejukan kejut terhadap kekerasan, mikrostruktur dan keherotan bagi tiga jenis besi yang berlainan. Tiga ujian telah dijalankan iaitu ujian kekerasan, pemeriksaan keherotan dan menganlisiskan perubahan mikrostruktur. Di mana kekerasan sampel menunjukkan kadar pengurangan yang serata apabila merentasi ke bahagian tengah bar yang disebabkan oleh pengurangan kadar penyejukan ke bahagian tengah. Sampel yang mempunyai kadar penyejukan yang cepat, perubahan austenite kepada pearlite tidak dapat dilakukan dan ia akan menjanakan satu fasa yang baru yang dikenali sebagai martensite. Martensiti adalah fasa yang lampau tepu. Selepas sampel disejukan, biasanya ia sangat keras dan kuat tetapi rapuh. Dibawah permerhatian mikroskop, mikrostruktur martensiti kelihatan berbentuk jarum yang disebabkan keunikan lapisan strukturnya. Oleh demikian, bahagian hujung yang mempunyai kadar penyejukan yang tinggi akan menunjukkan kekerasan yang maksimum. Mikrostruktur akan berubah dari Martensiti pada bahagian hujung sample ke bentuk ferriti-pearliti dimana jauh dari bahagian hujung sample. Setiap jenis medium penyejukan kejut mempunyai kadar penyejukan yang berlainan. Oleh demikian, ia akan membawa hasil keputusan yang berlainan kepada sample yang diuji.

TABLE OF CONTENT

CHAPTER

ITEM

PAGE

1	INT	RODUCTION	1
	1.1	Objective	3
	1.2	Scope of Research	3
	1.3	Heat Treatment	4
	1.4	Hardenability	5
	1.5	Microstructural Development	7
	1.6	Mechanical Properties	10
		1.6.1 AISI 1045 Carbon Steel	10
		1.6.2 AISI 4130 Low Alloy Steel	11
		1.6.3 AISI 304 Stainless Steel	12
	1.7	Quench Medium	13
	1.8	Distortion Profile	14
2	LITI	ERATURE REVIEW	17
3	MET	THODOLOGY	30
	2.1		20

3.1Experimental Procedures303.2Sample Preparations303.3Heat Treatment31

C Universiti Teknikal Malaysia Melaka

CHAPTER

4

ITEM

	3.3.1	Solution Heat Treatment	31
	3.3.2	End Quenching	32
3.4	Mecha	nical Testing	33
	3.4.1	Hardness Test	33
	3.4.2	Distortion Examination	34
3.5	Micros	structure Examination	34

ANA	LYSIS A	AND DISC	CUSSION		37
4.1	Introdu	uction			37
4.2	Hardn	ess Test Ai	nalysis		37
	4.2.1	Sample	Steels with Wa	ter	38
		Quenche	d		
		4.2.1.1	Hardness T	est	38
			Analysis H	For	
			AISI 10	45	
			Carbon Steel		
		4.2.1.2	Hardness T	est	42
			Analysis H	For	
			AISI 4130 Lo	ow	
			Alloy Steel		
		4.2.1.3	Hardness T	est	46
			Analysis H	For	
			AISI 3	04	
			Stainless Steel		

CHAPTER

ITEM

	4.2.1.4	Different	Steel	50
		Samples	with	
		Water Que	nched	
4.2.2	Sample	Steels with	n Oil	52
	Quenchee	d		
	4.2.2.1	Hardness	Test	52
		Analysis	For	
		AISI	1045	
		Carbon Ste	el	
	4.2.2.2	Hardness	Test	56
		Analysis	For	
		AISI 4130) Low	
		Alloy Steel	l	
	4.2.2.3	Hardness	Test	60
		Analysis	For	
		AISI	304	
		Stainless St	teel	
	4.2.2.4	Different	Steel	64
		Samples w	ith Oil	
		Quenched		
4.2.3	Sample	Steels with	n Air	66
	Quenchee	t		
	4.2.3.1	Hardness	Test	66
		Analysis	For	
		AISI	1045	
		Carbon Ste	el	

ix

		4.2.3.2	Hardness Test	70
			Analysis For	
			AISI 4130 Low	
			Alloy Steel	
		4.2.3.3	Hardness Test	74
			Analysis For	
			AISI 304	
			Stainless Steel	
	4.2.4	Sample	Steels with	78
	2	Differen	t Quench Mediums	
4.3	Distor	tion Analy	vsis	81
	4.3.1	Sample	Steels with Water	81
		Quenche	ed	
		4.3.1.1	Distortion Analysis	81
			For AISI 1045	
			Carbon Steel	
		4.3.1.2	Distortion Analysis	84
			For AISI 4130	
			Low Alloy Steel	
		4.3.1.3	Distortion Analysis	86
			For AISI 304	
			Stainless Steel	
	4.3.2	Sample	Steels with Oil	89
		Quenche	ed	
	4.	3.2.1 Dist	ortion Analysis For	89
		AIS	1 1045 Carbon Steel	

5

		4.3.2.2	Distortion Analysis	91
			For AISI 4130	
			Low Alloy Steel	
		4.3.2.3	Distortion Analysis	93
			For AISI 304	
			Stainless Steel	
	4.3.3	Sample	Steels with Air	96
		Quenche	ed	
		4.3.3.1	Distortion Analysis	96
8			For AISI 1045	
			Carbon Steel	
		4.3.3.2	Distortion Analysis	98
			For AISI 4130	
			Low Alloy Steel	
		4.3.3.3	Distortion Analysis	100
			For AISI 304	
			Stainless Steel	
4.4	Metall	ographic	Analysis	103
	4.4.1	Water A	s Quench Medium	103
	4.4.2	Oil As (Juench Medium	108

CONCLUSION1135.1The Problems Encountered1185.2The suggestion for Future119Research.

C Universiti Teknikal Malaysia Melaka

REFERENCES

121

ITEM

APPENDIX

А	AISI 1045 Carbon Steel Certificate	124
В	AISI 4130 Low Alloy Steel Certificate	125
С	Jominy End Quench Test Machine	128

LIST OF TABLE

NO.

TITLE

PAGE

1.1	Composition of AISI 1045 Carbon Steel	10
1.2	Composition of AISI 4130 Low Alloy Steel	11
1.3	Composition of AISI 304 Stainless Steel	12
2.1	Comparison of Grossmann and Heat Flux	19
	Quench Severity Data.	
4.1	Hardness Profile A1-W before undergone	39
	Water Quenched	
4.2	Hardness Profile A1-W after undergone	40
	Water Quenched	
4.3	Hardness Profile A2-W before undergone	43
	Water Quenched	
4.4	Hardness Profile A2-W after undergone	44
	Water Quenched	
4.5	Hardness Profile A3-W before undergone	47
	Water Quenched	
4.6	Hardness Profile A3-W after undergone	48
	Water Quenched	
4.7	Hardness Profile A1-O before undergone	53
	Oil Quenched	
4.8	Hardness Profile A1-O after undergone Oil	54
	Quenched	

NO.	TITLE	PAGE
4.9	Hardness Profile A2-O before undergone	57
4.9	Oil Quenched	57
4.10	Hardness Profile A2-O after undergone Oil	58
	Quenched	
4.11	Hardness Profile A3-O before undergone	61
	Oil Quenched	
4.12	Hardness Profile A3-O after undergone Oil	62
	Quenched	
4.13	Hardness Profile A1-A before undergone	67
	Air Quenched	
4.14	Hardness Profile A1-A after undergone Air	68
	Quenched	
4.15	Hardness Profile A2-A before undergone	71
	Air Quenched	
4.16	Hardness Profile A2-A after undergone Air	72
	Quenched	
4.17	Hardness Profile A3-A before undergone	75
	Air Quenched	
4.18	Hardness Profile A3-A after undergone Air	76
	Quenched	
4.19	Distortion Profile A1-W before undergone	82
	Water Quenched	
4.20	Distortion Profile A1-W after undergone	83
	Water Quenched	
4.21	Distortion Profile A2-W after undergone	85
	Water Quenched	
4.22	Distortion Profile A3-W after undergone	87
	Water Quenched	

NO.	TITLE	PAGE
4.23	Distortion Profile A1-O after undergone Oil	90
	Quenched	
4.24	Distortion Profile A2-O after undergone Oil	92
	Quenched	
4.25	Distortion Profile A3-O after undergone Oil	94
	Quenched	
4.26	Distortion Profile A1-A after undergone Air	97
	Quenched	
4.27	Distortion Profile A2-A after undergone Air	99
	Quenched	
4.28	Distortion Profile A3-A after undergone Air	101
	Quenched	

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

NO.	TITLE	PAGE
1.1	Possible transformations involving the	2
	decomposition of austenite. Solid arrows,	
	transformations involving diffusion: dashed	
	arrow, diffusion less transformation.	
1.2	Schematic temperature versus time plot	4
	showing both solution and precipitation	
	heat treatments for precipitation hardening.	
1.3	Jominy end-quench hardenability test (left),	5
	and Typical distribution of hardness in	
	Jominy bars (right).	
1.4	Several types of microstructures.	8
1.5	Hardness of martensite, as a function of	8
	carbon content.	
1.6	Correlation of continuous-cooling-	9
	transformation diagram and end-quench	
	hardenability test data for eutectoid carbon	
	steel.	
1.7	Distortion profile before and after	14
	quenching process.	

XV

NO.	TITLE	PAGE
2.1	Variation of heat flux with probe surface temperature during end quenching of	19
2.2	stainless steel. Hardness traverse results for air- and oil- quenched heat treatment blanks used for	20
	corrosion experiment and for valve heat treat blanks used for the heat treatment distortion studies.	
2.3	Hourglass distortion patterns can be seen near the quenched end in flat ground in the Jominy bars due to diameter variation along	22
2.4	the length. Data for Diameter versus Distance from	22
2.1	quenched end.	
2.5	Data for Rockwell Hardness versus	24
	Distance from quenched end.	
2.6	The microstructures of martensite and ferrite/pearlite.	25
2.7	Microstructures of AISI 1040 steel disk specimens quenched in conventional quench media: (a) 10% brine, (b) water, (c) mineral oil, (d) sunflower oil, (e) coconut	26
2.8	oil, and (f) groundnut oil. Effect of Austenite Grain Size on Hardenability in the Jominy End Quench	27
	Test.	
2.9	Rockwell Hardness versus Distance from	28
	quenched end for alloy steel and carbon steel [Dr. James Marrow].	

xvi

NO.	TITLE	PAGE
2.10	Rockwell Hardness versus Distance from	28
	quenched end for alloy steel and carbon	
	steel [Serdar Z. Elgun].	
3.1	Dimension of the Jominy Bar.	31
3.2	Jominy End Quenching process.	32
3.3	Sections selected to microstructure examination.	35
4.1	Jominy End Quenched Test data for AISI	41
	1045 before and after Water Quenched.	
4.2	Jominy End Quenched Test data for AISI	45
	4130 before and after Water Quenched.	38 10
4.3	Jominy End Quenched Test data for AISI	49
	304 before and after Water Quenched.	
4.4	Jominy End Quenched Test data for	51
	Different Steel Samples (Water Quenched).	
4.5	Jominy End Quenched Test data for AISI	55
	1045 before and after Oil Quenched.	
4.6	Jominy End Quenched Test data for AISI	59
	4130 before and after Oil Quenched.	
4.7	Jominy End Quenched Test data for AISI	62
	304 before and after Oil Quenched.	
4.8	Jominy End Quenched Test data for	65
	Different Steel Samples (Oil Quenched)	
4.9	Jominy End Quenched Test data for AISI	69
	1045 before and after Air Quenched.	
4.10	Jominy End Quenched Test data for AISI	73
	4130 before and after Air Quenched.	
4.11	Jominy End Quenched Test data for AISI	77
	304 before and after Air Quenched.	

xviii

NO.	TITLE	PAGE
4.12	Jominy End Quenched Test data for	78
	Different Quench Mediums for AISI 1045	
	Carbon Steel.	
4.13	Jominy End Quenched Test data for	79
	Different Quench Mediums for AISI 4130	
	Low Alloy Steel.	
4.14	Distortion Profile data for AISI 1045 before	84
	and after Water Quenched.	
4.15	Distortion Profile data for AISI 4130 before	86
	and after Water Quenched.	
4.16	Distortion Profile data for AISI 304 before	88
	and after Water Quenched.	
4.17	Distortion Profile data for AISI 1045 before	91
	and after Oil Quenched.	
4.18	Distortion Profile data for AISI 4130 before	93
	and after Oil Quenched.	
4.19	Distortion Profile data for AISI 304 before	95
	and after oil Quenched.	
4.20	Distortion Profile data for AISI 1045 before	98
	and after Air Quenched.	
4.21	Distortion Profile data for AISI 4130 before	100
	and after Air Quenched.	
4.22	Distortion Profile data for AISI 304 before	102
	and after Air Quenched.	
4.23	The A1-W sample structure at the quenched	104
	end under 100X Magnification.	
4.24	The A1-W sample structure at 2 inch from	104
	the quenched end under 100X	
	Magnification.	

NO.	TITLE	PAGE
4.25	The A2-W sample structure at the quenched	105
	end under 100X Magnification.	
4.26	The A2-W sample structure at 2 inch from	106
	the quenched end under 100X	
	Magnification.	
4.27	The A3-W sample structure at the quenched	107
	end under 100X Magnification.	
4.28	The A3-W sample structure at 2 inch from	107
	the quenched end under 100X	
	Magnification.	
4.29	The A1-O sample structure at the quenched	108
	end under 100X Magnification.	
4.30	The A1-O sample structure at 2 inch from	109
	the quenched end under 100X	
	Magnification.	
4.31	The A2-O sample structure at the quenched	110
	end under 100X Magnification.	
4.32	The A2-O sample structure at 2 inch from	111
	the quenched end under 100X	
	Magnification.	
4.33	The A3-O sample structure at the quenched	111
	end under 100X Magnification.	
4.34	The A3-O sample structure at 2 inch from	112
	the quenched end under 100X	
	Magnification.	

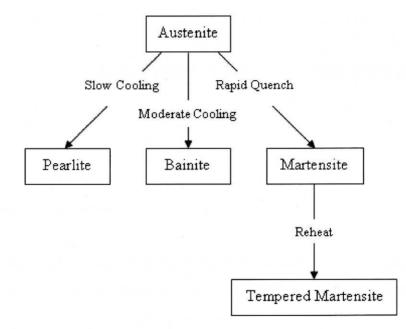
xix

LIST OF SYMBOLS

SYMBOL

DEFINITION

A1-W	AISI 1045 Carbon Steel with Water Quenched
A2-W	AISI 4130 Low Alloy Steel with Water Quenched
A3-W	AISI 304 Stainless Steel with Water Quenched
A1-0	AISI 1045 Carbon Steel with Oil Quenched
A2-0	AISI 4130 Low Alloy Steel with Oil Quenched
A3-0	AISI 304 Stainless Steel with Oil Quenched
A1-A	AISI 1045 Carbon Steel with Air Quenched
A2-A	AISI 4130 Low Alloy Steel with Air Quenched
A3-A	AISI 304 Stainless Steel with Air Quenched


CHAPTER I

INTRODUCTION

Quenching is the most basic and widely practiced steel heat treatment processes. It allows the base properties and performance of the steel to be significantly enhanced, such that a relatively inexpensive and simple starting material can be used for a wide range of demanding applications. Apart from the widely used immersion quenching techniques, the fundamental and latest development of other quenching techniques such as spray quenching, gas quenching in vacuum furnaces and hot salt bath quenching.

Quenching refers to rapid cooling of metal parts from the solution-treating temperature, typically in the range of 845-870 °C (1550 to 1600 °F) for steel alloys. Quenching is performed to prevent ferrite or pearlite formation and allow bainite or martensite to be formed. Martensite is the most commonly desired transformation product; refer to Figure 1.1. Quenching of steel in liquid medium consists of three distinct stages of cooling: vapor phase, nucleate boiling, and convective stage. Quenching is the most critical part of the hardening process. The quenching process has to be designed so as to extract heat from the hot work piece at such a rate as to produce the microstructure, hardness and residual stresses desired. There is much type of quenching techniques such as spray quenching, gas quenching in vacuum furnaces, intensive quenching, hot salt bath quenching, and Jominy end-quenching and so on.

When steel is heated to a temperature above the upper limit of its critical range and is then rapidly cooled in a suitable medium such as water or oil, it is hardened. An increase in hardness is obtained. The increase in hardness is greater as the cooling rate is increased. The ultimate tensile strength of mild steel is greatly improved by water quenching instead of air cooled. The hardened article is usually too brittle for use, and is therefore tempered in order to reduce its hardness and increase its toughness. By tempering is meant reheating steel (however previously treated) to a temperature of tempering, the more does the treated steel approach its condition of minimum hardness.

Figure 1.1 Possible transformations involving the decomposition of austenite. Solid arrows, transformations involving diffusion: dashed arrow, diffusion less transformation.

1.1 Objective

The project is concerned with effect of end quenching process based on their hardenability, microstructure and distortion profile. The objectives are as follows:

- To obtain experiment data for AISI 1045 carbon steel, AISI 4130 low alloy steel and AISI 304 stainless steel in three difference quenching medium such as water, quench oil and air;
- To investigate the resultant microstructure of steel when subjected to type of heat treatment; and
- To observe the microstructural changes occur when different parameters involved.

1.2 Scope of Research

- a) Conduct laboratory work on AISI 1045 carbon steel, AISI 4130 low alloy steel and AISI 304 stainless steel with heated austenitizing temperature and cooled in different quenching medium.
- b) The microstructure analyses, hardness and distortion profile will be done after undergoing the end quenching process.

3