"I admit that I have read this report and I found that it is suffice from the aspect of scope and quality to pass Bachelor Degree of Mechanical Engineering (Design and Innovation)

Signature

Supervisor Name:

MR. HAMBALI BIN BOEJANG

Date

8 MAY 2007

# ASSESSMENT OF FUSE DEPOSITION MODELING (FDM) MACHINE AND 3D MODELING MACHINE

# **MOHD JEFRI BIN AMIR**

A thesis is fulfillment of the requirement for the award of the Bachelor Degree of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **APRIL 2007**

# **DECLARATION**

"I hereby declare that this thesis entitled "Assessment of Fuse Deposition Modeling (FDM) Machine and 3D Modeling Machine" is the result of my own research except as cited in the references"

Signature:

MOHD JEFRI BIN AMIR Author:

8 MAY 2007 Date

# **DEDICATION**

THIS TASK IS DEDICATED TO ALL MY FAMILY ESPECIALLY MY PARENT, BROTHER AND SISTER. YOU ALL VERY IMPORTANT IN MY LIFE.

ALSO TO MY PROJECT SUPERVISOR, ALL LECTURES, TECHNICIAN AND ALL MY FRIENDS ESPECIALLY COURSE MATE. THIS PROJECT WILLS SUCCESS BECAUSE OF YOR SUPPORT.

#### ACKNOWLEDGMENT

First of all, I would like to praise Allah for giving me the strength to endure the Projek Sarjana Muda period with a great successfully. It is known that, this PSM is one of the most important subjects that must be endured by all UTeM students as a requirement to get a degree.

I would like to say thank to my project supervisor Mr. Hambali Bin Boejang from faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka for his commitment, support, advice, time share and guidance given. His helps contribute lots in order to complete this project successfully. Not forgotten, for all lectures and technicians involves with their invaluable support, shared of information and also their experiences.

I would like to express greatest thankful to my parent, Mr Amir Bin Saman and Mrs Rokiyah Binti Saidi for their support in order to ensure completion of this project, encourage from them be the morale for me to do the best of this project. Not forgotten, special thanks to all my friends for their help, support and information given. Thank to all people who directly or indirectly have been help contribute and full support through the project period

Lastly, I would like to apologize for my wrong-doing and mistakes during this PSM period. I hope all the knowledge and experience that I gathered in this PSM can help me in my career in the future.

Thanks.

#### **ABSTRAK**

Kemajuan dalam 'Rapid prototyping, teknologi pada masa ini telah banyak meningkatkan keperluan yang tinggi untuk kualiti yang lebih baik, ketahanan dan pembuatan, 'Rapid Prototyping' teknologi adalah salah satu proses pilihan di mana diguna pakai di dalam menghasilkan model prototype dalam industri pada masa kini. Proses ini berpotensi sebagai pilihan di dalam menghasilkan model prototype sebelum menhhasilkan produk yang sebenar. Laporan ini telah menerangkan pengenai penilaian bagi mesin 'FDM' dan mesin '3D Modeling'. Penilaian bagi kedua-dua mesin ini adalah melibatkan perbandingan ketepatan mesin menghasilkan sesuatu produk, jangkamasa mesin menghasilkan produk dan melihat permukaan hasil kerja setelah siap dibuat. Report ini juga ada menerangkan mengenai proses dan teknik dalam 'rapid prototyping' di mana merangkumi mesin Steriolithograpi, 3D printing, FDM dan 3D modeling. Laporan ini juga menerangkan mengenai caracara penilaian dibuat keatas kedua-dua mesin, analisis dan mengeluarkan keputusan untuk membuat perbandingan.

#### ABSTRACT

Development in Rapid Prototyping Technology is increasing due to high requirement for better quality, durability and manufacturability. Rapid prototyping technology is one of the alternative processes that have received considerable attention from industry recently. In industry, the process is potential to be as an option to developed prototyping model before produced a real product. This report overviews the state of the Assessment of the FDM machine with the 3D modeling Machine. The assessment both of the machines provided the comparison of build time, surface finish and accuracy of the machine. This report also has briefly about the rapid prototyping process and techniques providing the Steriolithograpy machine, 3d printing, FDM machine and 3D modeling machine. This report also explains about the experimental work for assessment of Rapid prototyping machine, analysis and carries out the result for comparison.

# TABLE OF CONTENTS

| CHAPTER | CONTENTS                                         | PAGES |
|---------|--------------------------------------------------|-------|
|         | COVER PAGE                                       | i     |
|         | DECLARATION                                      | ii    |
|         | DEDICATION                                       | iii   |
|         | ACKNOWLEDGEMENT                                  | iv    |
|         | ABSTRAK                                          | v     |
|         | ABSTRACT                                         | vi    |
|         | TABLE OF CONTENT                                 | vii   |
|         | LIST OF TABLE                                    | xi    |
|         | LIST OF FIGURE                                   | xiii  |
|         | GLOSSARY                                         | xv    |
|         | APPENDIX                                         | xvi   |
| 1.0     | PROJECT INTRODUCTION.                            |       |
|         | 1.1 Project Background                           | 1     |
|         | 1.2 Project Main Objective.                      | 2     |
|         | 1.2.1 Aim                                        | 2     |
|         | 1.2.2 Objective                                  | 2     |
|         | 1.3 Scope of Project                             | 3     |
|         | 1.4 Problem Statement                            | 3     |
|         | 1.5 Problem Solving                              | 4     |
|         | 1.6 Project Flow Chart                           | 5     |
|         |                                                  |       |
| 2.0     | AN INTRODUCTION OF RAPID PROTOTYPING             |       |
|         | 2.1 An Over View of Rapid Prototyping Technology | 6     |
|         | 2.2 Subtractive Processes.                       | 8     |
|         | 2.3 Additive Processes                           | 9     |

|     | 2.4 Type of Rapid Prototyping Machine    | 10 |
|-----|------------------------------------------|----|
|     | 2.4.1 Steriolithography (SLA)            | 10 |
|     | 2.4.2 Fused Depositioning Modeling (FDM) | 11 |
|     | 2.4.3 Three Dimensional Printing (3DP)   | 12 |
|     | 2.5 STL Requirement.                     | 13 |
|     | 2.6 Rapid Prototyping Process.           | 13 |
|     | 2.6.1 CAD Model.                         | 14 |
|     | 2.6.2 STL Files                          | 15 |
|     | 2.6.3 Pre-processing                     | 15 |
|     | 2.6.4 Transfer File to RP                | 15 |
|     | 2.6.5 Machine Build                      | 16 |
|     | 2.6.6 Post-processing                    | 16 |
| 3.0 | AN INTRODUCTION OF FDM MACHINE           |    |
|     | 3.1 An Over View of FDM Technology       | 17 |
|     | 3.2 FDM Processes.                       | 18 |
|     | 3.2 FDM Machine Process Chain            | 19 |
|     | 3.3 Type of FDM Machine                  | 20 |
|     | 3.4 Material Used for FDM                | 22 |
|     | 3.4.1 Material Properties                | 22 |
|     | 3.5 How FDM Processes Built the Part     | 24 |
|     | 3.6 Sample Product Using FDM Machine     | 25 |
| 4.0 | AN INTRODUCTION OF 3D MODELING           |    |
|     | 4.1 Introduction                         | 26 |
|     | 4.2 Computer Aided Manufacturing         | 27 |
|     | 4.3 Machining Processes                  | 28 |
|     | 4.3.1 Roughing                           | 28 |
|     | 4.3.2 Semi-finishing                     | 28 |
|     | 4.3.3 Finishing                          | 28 |
|     | 4.4 Charlyrobot2U (3D modeling machine)  | 29 |
|     | 4.5 Type of Charlyrobot Machine          | 29 |
|     |                                          |    |

viii

| 43 |
|----|
| 12 |
|    |

|     | 4.6 Charly2U Machine                          | 30 |
|-----|-----------------------------------------------|----|
|     | 4.7 Basic Principle of Charly2U               | 30 |
|     | 4.8 The Strength of Charly2U Machine          | 32 |
|     | 4.9 Cutting Data Calculation                  | 35 |
|     | 4.9.1 Introduction                            | 35 |
|     | 4.9.2 Milling Cutting Data-formula            | 35 |
|     | 4.9.3 Drilling Cutting Data-formula           | 37 |
|     | 4.10 Sample Product Using Charlyrobot Machine | 38 |
| 5.0 | METHODOLOGY                                   |    |
|     | 5.1 Introduction                              | 39 |
|     | 5.2 Experiment Study                          | 41 |
|     | 5.3 Design Test Model                         | 42 |
|     | 5.4 CAD Data Verification                     | 44 |
|     | 5.5 Machine Data                              | 45 |
|     | 5.6 Manufacture Test Model                    | 45 |
|     | 5.6.1 FDM Machine.                            | 45 |
|     | 5.6.2 3D Modeling Machine                     | 46 |
|     | 5.7 Measurement and Analysis                  | 46 |
|     | 5.7.1 Surface Methodology                     | 46 |
|     | 5.7.2 Surface Roughness                       | 48 |
|     | 5.7.3 Arithmetic Mean Value                   | 48 |
|     | 5.7.4 Root-Mean-Square Average                | 49 |
|     | 5.7.5 Maximum Roughness Height                | 49 |
|     | 5.7.6 Ten Point Height of Irregularities      | 50 |
|     | 5.7.7 Portable Surface Roughness Tester       | 50 |
|     | 5.7.8 Coordinate Measuring Machine            | 51 |
|     | 5.8 Result and Comparison                     | 51 |
| 6.0 | EXPERIMENTAL WORK                             |    |
|     | 6.1 Introduction                              | 54 |
|     | 6.2 Objective                                 | 54 |

|     | 6.3 Standard of Procedure of 3DModeling Machine           | 23  |
|-----|-----------------------------------------------------------|-----|
|     | 6.4 Standard of Procedure of FDM Machine                  | 62  |
|     | 6.5 Standard of Procedure of Coordinate Measuring Machine | 66  |
|     | 6.6 Standard of Procedure of 3D Portable Surface          |     |
|     | Roughness Tester                                          | 67  |
| 7.0 | RESULT AND DISCUSSION                                     |     |
|     | 7.1 Introduction                                          | 69  |
|     | 7.2 Built Time Data                                       | 69  |
|     | 7.2.1 FDM Machine Data of Built Time                      | 70  |
|     | 7.2.2 3D Modeling Machine data of Built Time              | 71  |
|     | 7.3 surface Finish Data                                   | 72  |
|     | 7.3.1 FDM data of Surface Finish                          | 73  |
|     | 7.3.2 3D Modeling Machine (Charlyrobot2U)                 |     |
|     | Data analysis of Surface Roughness                        | 74  |
|     | 7.4 Accuracy Data                                         | 74  |
|     | 7.5 Comparison of Built Time                              | 80  |
|     | 7.6 Comparison of Surface Finish                          | 81  |
|     | 7.7 Comparison of Accuracy                                | 87  |
|     | 7.8 Limitation of the Machine Performance                 | 92  |
|     | 7.8.1 3D Modeling Machine                                 | 92  |
|     | 7.8.2 FDM Machine                                         | 94  |
|     | 7.9 Advantages and Disadvantages                          | 96  |
|     | 7.10 Experimental Problem                                 | 97  |
|     | 7.11 Summary of Comparison                                | 97  |
| 8.0 | CONCLUSION AND RECOMMENDATION                             |     |
|     | 8.1 Conclusion                                            | 98  |
|     | 8.2 Recommendation                                        | 99  |
|     | REFERENCES                                                | 100 |

# LIST OF TABLE

| TABLE NO | TITLE                                            | PAGE |
|----------|--------------------------------------------------|------|
| 2.1      | Characteristics of Rapid Prototyping             |      |
|          | Technologies                                     | 7    |
| 3.1      | Specification of FDM Machine                     | 21   |
| 4.1      | Specification of 3D Modeling machine             |      |
|          | (Charly2U) [8]                                   | 33   |
| 4.2      | Technical Feature of 3D Modeling Machine         |      |
|          | (Charly2U)                                       | 34   |
| 4.3      | Milling Cutting Formula                          | 36   |
| 4.4      | Drilling Cutting Formula                         | 37   |
| 5.1      | Dimensional and geometrical product              |      |
|          | Specification and verification                   | 41   |
| 5.2      | Summary of the feature and purpose               | 43   |
| 6.1      | Parameter Setting for Modeler                    | 63   |
| 7.1      | Total time to build test model using             |      |
|          | FDM Machine                                      | 70   |
| 7.2      | Total time to build test model using             |      |
|          | 3D Modeling Machine                              | 71   |
| 7.3      | Surface Roughness Measurement Data (FDM Machine) | 73   |
| 7.4      | Surface Roughness Measurement Data               |      |
|          | (3D Modeling Machine)                            | 74   |
| 7.5      | Data Measurement of Test Model Using             |      |
|          | CMM (FDM machine)                                | 75   |
| 7.6      | Data Measurement of Test Model Using             |      |
|          | CMM (3D Modeling Machine)                        | 77   |
| 7.7      | <b>Built Time Comparison Between FDM machine</b> |      |
|          | with 3D Modeling Machine                         | 80   |
| 7.8      | Surface Roughness Comparison Between FDM         |      |
|          | Machine with 3D Modeling Machine                 | 81   |

|      |                                                    | xii |
|------|----------------------------------------------------|-----|
| 7.9  | Parameter Setting of the Machine                   | 84  |
| 7.10 | Feed rate speed base on formula                    | 84  |
| 7.11 | Parameter setting for FDM machine                  | 85  |
| 7.12 | Percentage deviation from nominal dimension        |     |
|      | for geometric features measurement                 | 87  |
| 7.13 | Comparison Geometric features completed with grade | 88  |
| 7.14 | The comparison quantity grade from geometric       |     |
|      | features measurement                               | 93  |
| 7.15 | Comparison between FDM and 3D Modeling             |     |
|      | machine due to relative measurement                | 90  |
| 7.16 | Advantages and Disadvantages of FDM                |     |
|      | and 3D Modeling Machine                            | 96  |
| 7.17 | Summary of machine comparison                      | 97  |

# LIST OF FIGURE

| FIGURE NO | TITLE                                                | PAGE |
|-----------|------------------------------------------------------|------|
| 2.1       | Stereolithography Process                            | 10   |
| 2.2       | FDM Machine process                                  | 11   |
| 2.3       | Three Dimensional Printing (3DP) Process             | 12   |
| 2.4       | Rapid Prototyping processes                          | 14   |
| 3.1       | FDM Process                                          | 18   |
| 3.2       | FDM Processes Chain                                  | 19   |
| 3.3       | Type of FDM Machine                                  | 20   |
| 3.4       | FDM Part                                             | 24   |
| 3.5       | Sample Product of FDM Machine                        | 25   |
| 4.1       | Type of Charlyrobot Machine                          | 29   |
| 4.2       | 3D Modeling Machines (Charlyrobot2U)                 | 31   |
| 4.3       | Sample Product Using Charlyrobot Machine             | 38   |
| 5.1       | Method flow                                          | 40   |
| 5.2       | Design test model using Catia V5                     |      |
|           | CAD software                                         | 42   |
| 5.3       | Design test model complete with the                  |      |
|           | Feature purpose                                      | 44   |
| 5.3       | Verifying CAD Data Using Magic Software              | 44   |
| 5.4       | The Surface texture                                  | 47   |
| 5.5       | Cross Section-surface                                | 47   |
| 5.6       | The Arithmetic Mean Value                            | 49   |
| 5.7       | The maximum Roughness Height                         | 50   |
| 5.8       | SJ-301-Portable Surface Roughness Tester             | 51   |
| 5.9       | Design Test Model Complete with the features purpose | 52   |
| 5.10      | Design test model for past-fail feature and          | 53   |
|           | Mechanical feature                                   |      |
| 5.11      | Design test model for relative measurement           | 53   |
| 7.1       | The area of Surface Roughness Analysis               | 72   |

|      |                                                      | xiv |
|------|------------------------------------------------------|-----|
| 7.2  | Graph of Differential between FDM and 3D Modeling    |     |
|      | Machine due to Surface Finish                        | 81  |
| 7.3  | Direction of Cutting Process                         | 82  |
| 7.4  | Type of Cutting Tools use                            | 86  |
| 7.5  | Part orientation                                     | 86  |
| 7.6  | Graph of differential between FDM and 3D             |     |
|      | Modeling machine due to accuracy percentages         | 89  |
| 7.7  | Graph of Differential between FDM and 3D Modeling    |     |
|      | Machine Due to Percentage error of Flatness,         |     |
|      | Perpendicular and Parallelism.                       | 91  |
| 7.8  | Differential between FDM and 3D Modeling             |     |
|      | Machine due to percentages error of Cylindricity     | 91  |
| 7.9  | Part Fabricate on 3D Modeling Machine                | 92  |
| 7.10 | Highlight part area of features including pass-fail  | 93  |
| 7.11 | Part fabricate on FDM Machine                        | 94  |
| 7.12 | Highlight part area the features including pass-fail | 95  |



# **GLOSSARY**

#### **DEFINATION SYMBOL** RP Rapid prototyping 3D Tree Dimensional CAD Computer Aided Design STL Standard Triangulation Language **FDM** Fused Deposition Modeling **IGES Initial Graphics Exchange Specification CMM** Coordinate Measurement Machine **CAM** Computer-aided manufacturing NC **Numerically Controlled CNC** Computer Numerical Control

Computer Aided Design

**Direct Numerical Control** 

CAD

**DNC** 

# **APPENDIX**

| APPENDIX | TITLE                              | PAGE |
|----------|------------------------------------|------|
| A        | Gant Chart                         | 101  |
| В        | ISO Standard Measurement Using CMM | 104  |
| С        | Surface Roughness Comparison Chart | 107  |
| D        | Surface Roughness Measurement Data | 109  |
| E        | CMM Measurement Data               | 118  |
| F        | Drawing                            | 131  |

#### **CHAPTER 1**

# PROJECT INTRODUCTION

# 1.1 Project Background

'Projek Sarjana Muda' (PSM) is a compulsory for all student of UTeM in order to obtain a degree in the engineering field. From the PSM, every student will apply their subject learned from the classes into the final project. There are many applications that have to do such as theoretical, experimental, analysis, design and so on.

These final projects will an overview the comparison of rapid prototyping machine. There are two type of rapid prototyping such as Feed Deposition Machine (FDM) and 3D Modeling Machine. This project start from design test model prototyping, fabricate the prototype using the machine and make the analysis using the CMM machine and Portable Surface Roughness Tester. The analyses are including the dimensional accuracy, built time model and visual the surface finish.

This project chosen because a new technologies in rapid prototyping is being used in just about all industrial sectors, although there are probably more applications in the automotive industry than any other[10]. It's faster, coast less, and quality is improved. Typically, these saving vary between 40% and 80 % for both cost and time, and in the same case go even higher. In most companies 10% cost or time

saving on a major development program would be considered excellent. A 20% time or cost saving is considered outstanding. A 30% Cost or time saving would be considered phenomenal. But a 50 % time or cost saving is a paradigm shift that can over whelm competition [4]. Rapid Prototyping (RP) techniques also are methods that allow to quickly producing physical prototypes with the important benefit to reduce the time to market.

So, the comparison both of the machine will give more knowledge in the rapid prototyping process. In this case, the advantages and disadvantages will show at the final result and thinking about the improvement of the machine. May be there are a lot of method can be used to produce a more quality of the product.

# 1.2 Project Main Objective.

#### 1.2.1 Aim

The aim of this report is to provide an assessment of Fuse Deposition Modeling Machine (FDM) and 3D Modeling Machine. This is a newly purchased Rapid prototyping (RP) facility in prototype laboratory at UTeM.

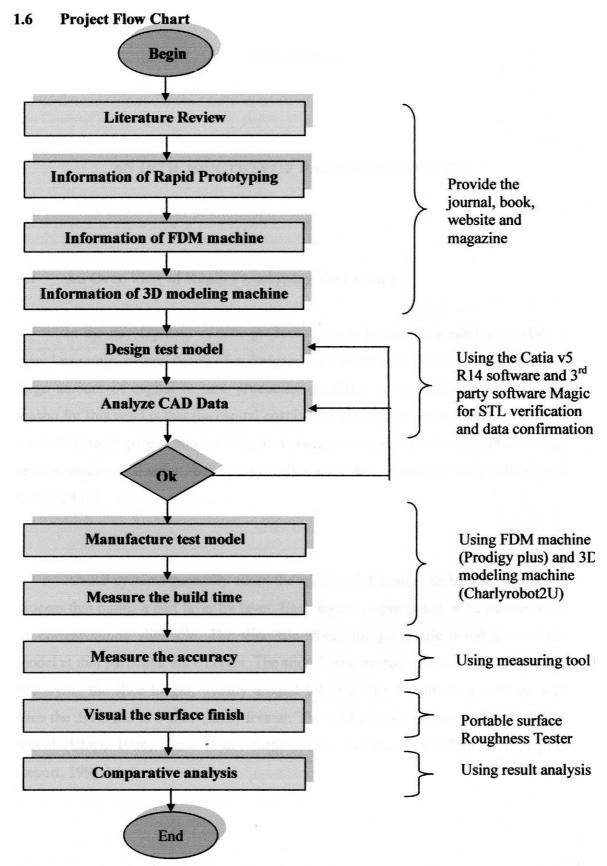
#### 1.2.2 Objective

The objectives of the report are clarifying the stages involved in assessment of rapid prototyping machine. There are including two type of rapid prototyping machine such as Fuse Deposition Machine (additive process) and 3D Modeling Machine (subtractive process). The objectives are following:

- To do literature search
- · To design test model
- To manufacture the test model via RP technique and CNC
- To measure the built time
- To measure the accuracy
- To visualize the surface finish
- To carry out comparative analysis (advantages and disadvantages, application etc.)

### 1.3 Scope of Project

The main project of scope is to assess a newly purchased RP facility in prototyping laboratory at faculty of mechanical engineering in UTeM, This project is to compare two different processes such as additive and subtractive process which produce a better prototype.


#### 1.4 Problem Statement

Many students did not no about the capability of this rapid prototyping machine in producing prototypes especially based on its prototype accuracy, built time, and the surface finished. This is because the machine is new to UTeM and not many students know how to use it to its full potential.

# 1.5 Problem Solving

To make a detail analysis on both of these RP methods of FDM and 3D modeling machine at FKM's prototype laboratory to see its potentials a test model was built in order to compare its performance in terms of surface finish, accuracy and built time in producing prototypes.





Final Project

Faculty of Mechanical Engineering

#### **CHAPTER 2**

# AN INTRODUCTION OF RAPID PROTOTYPING

# 2.1 An Over View of Rapid Prototyping Technology

In the development of new product, there is invariably a need to produce a signal example, or prototype, of a designed part or system, before the allocation of large amount of capital to new production facilities or assemble lines. The main reason for this need is that the capital cost is so high, and production tooling takes so much time to prepare. Consequently, a working prototype is need for troubleshooting and for design evaluation, before a complicated system is ready to be produced and marketed [2].

All RP systems generally adopt the additive fabrication technique, which is a process that builds a part layer by layer. Each layer is represented and determined by its corresponding slice file. The slice file stores the geometric detail data of the model at that particular slice height. The slice file is created from the .STL file. After specifying the slice height, usually around 0.15mm, the RP attached software will slice the .STL file to a slice (.SLI) format. The .SLI file is then used to build the RP model (Chua, 1994; Chua *et al.*, forthcoming; Jacobs, 1992; Rapid Prototyping Report, 1997a).