AUTOMOTIVE RADIATOR PERFORMANCE

MOHD SYAHAR BIN MOHD SHAWAL

This thesis is submitted to Mechanical Engineering Faculty in partial fulfillment of the requirements for the award of Bachelor Degree in Mechanical Engineering (Thermal- Fluid)

Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

May 2006

C Universiti Teknikal Malaysia Melaka

AUTOMOTIVE RADIATOR PERFORMANCE

MOHD SYAHAR BIN MOHD SHAWAL

This thesis is submitted to Mechanical Engineering Faculty in partial fulfillment of the requirements for the award of Bachelor Degree in Mechanical Engineering (Thermal- Fluid)

Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

May 2006

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this thesis entitled "Automotive Radiator Performances" is the result of my own research except as cited in the references"

Signature Name Date : LA WAHZ CHOM WIG SAHAVE CHOM : : DOL 3006 3005 3005 Dedicated to my beloved Mother, family and to

Mr. Md. Isa Bin Ali,

for their love, support and prays

iii

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah for His blessing. Without Allah's help I will not be able to complete this research as required and without the help and support from certain groups and individual it will be impossible for me to actually finish this research.

Not to forget, my supervisor Mr. Md. Isa Ali for giving me the guidance to do this report as required and other lecturers who had given me endless help, guidance, and support me to make up with the standard as required as a Mechanical Engineering student during the research.

I also want to thank to KUTKM for giving me opportunity to get more experiences and knowledge during the period of the research.

Last but not least, I would like to express my gratitude to my parents, friends, and all those that have been very supportive to me in finishing this research.

Thank you.

ABSTRACT

v

Work reported in this study state an experimental study of the parameters that affect the radiator performance. There are two performances studied which is heat performance and physical performance. The experiment was carried out by using engine capacity of 1.5 L for Proton Wira (4 cylinders) for evaluating the working performance of different types of radiator (capacity engine 1.5 L). In this experiment, performance data of automotive radiator were acquired for analysis purpose to improve available radiator performance. Parameters of radiator performance that studied such as pressure, temperature, flow rate, material used and also radiator sizing. The influence of the air velocity, inlet coolant temperature, volume flow rate of coolant on heat dissipation and coolant pressure drop are also discussed in detail in this study.

Performance data of automotive radiator such as temperature, pressure, velocity and flow rate were acquired to find out the effects of operating parameters to radiator performances. The heat dissipation rate of the radiator increased as coolant volume flow rate increased. From this study, it was found that the heat performance of the radiator clearly depends on its operating parameters such as inlet coolant temperature, coolant volume flow rate, air velocity, temperature drop and also coolant pressure drop.

Meanwhile, the inlet coolant temperature hardly affected the coolant pressure drop of the radiator. Also found that the amount of heat loss by radiator with cooled fan was greater than amount of heat loss which produced by radiator without the cooled fan. Based on the results, Mitsubishi radiator was found as the most suited radiator to attach with engine capacity of 1.5 L for Proton Wira.

ABSTRAK

Kajian ini menerangkan satu kajian secara eksperimen tentang parameterparameter yang mempengaruhi prestasi radiator. Terdapat dua prestasi yang dikaji iaitu prestasi haba dan prestasi fizikal. Eksperimen ini dijalankan dengan menggunakan enjin berkapasiti 1.5 L Proton Wira (4 silinder) untuk menilai parameter-parameter yang mempengaruhi radiator yang berlainan jenis. Dalam eksperimen ini, data prestasi untuk radiator automotif diperolehi untuk tujuan analisis bagi mempertingkatkan prestasi radiator yang sedia ada. Parameter-parameter prestasi radiator yang dikaji adalah seperti tekanan, suhu, kadar alir, bahan dan juga saiz radiator itu sendiri. Pengaruh halaju udara, suhu masukan penyejuk, kadar alir isipadu penyejuk terhadap kadar kehilangan haba dan perubahan tekanan penyejuk juga dibincangkan secara terperinci dalam kajian ini.

Data prestasi radiator seperti suhu, tekanan, halaju angin dan kadar alir diperolehi untuk mengenalpasti kesan-kesan parameter yang dikaji terhadap prestasi radiator. Kadar kehilangan haba radiator meningkat dengan peningkatan kadar alir isipadu penyejuk. Didapati bahawa prestasi haba bagi radiator adalah bergantung kepada parameter-parameter seperti suhu masukan penyejuk, kadar alir isipadu, halaju udara, perubahan suhu dan juga perubahan tekanan penyejuk.

Sementara itu, suhu masukan penyejuk adalah hampir tidak memberi kesan terhadap perubahan tekanan penyejuk radiator. Selain itu juga, jumlah kehilangan haba radiator berbantu kipas penyejuk adalah lebih besar daripada jumlah kehilangan haba yang dihasilkan oleh radiator tanpa berbantu kipas penyejuk. Berdasarkan keputusan, didapati bahawa radiator jenis Mitsubishi merupakan radiator yang paling sesuai digunakan pada enjin berkapasiti 1.5 L jenis Proton Wira.

CONTENTS

CHAPTER		ITEMS	PAGE
	Abstr	act	v
	List o	f tables	x
	List o	of figures	xii
	List o	of symbols	xv
	List o	f appendix	xvii
I.	INTR	RODUCTION	
	1.1	Overview	1
	1.2	Problem statements	2
	1.3	Objectives of study	2
	1.4	Scope of study	2
п	LITE	CRATURE REVIEW	
	2.1	Pressure drop in radiator air tubes	3
	2.2	New pressure based methods for quantifying	
		radiator air flow	3
	2.3	Thermal performance of automotive aluminum	
		plate radiator	5

2.4	Experimental study of operating performance	
	of a tube-and-fin radiator for vehicles	5
2.5	The effect of changes in ambient and coolant	
	radiator inlet temperatures and coolant flow rate	
	on specific dissipation	8
2.6	An engine coolant temperature model and	
	application for cooling system diagnosis	
2.7	Analysis and experimental verification of	
	an improved cooling radiator	11
2.8	Definition of radiator	12
2.9	Theory of cooling system	14

III METHODOLOGY

3.1	Engine radiator performance test	16
3.2	Objectives of experiment	17
3.3	Schematics of engine radiator performance test	18
3.4	Calculations for mass flow rate	19
3.5	Calculations for total heat transfer	20
3.6	Calculations of compactness	20

IV RESULT AND DISCUSSION

4.1	Analysis on mass flow rate	22
4.2	Analysis on total heat loss	23
4.3	Analysis on compactness	28
4.4	Analysis on effect of coolant volume flow rate	
	and coolant temperature drop on heat dissipation	
	rate	34

viii

V

CONCLUSION AND RECOMMENDATION

5.1	Conclusion	45
5.2	Future Work and Recommendation	46
REF	ERENCES	47

LIST OF TABLES

TABLE NO.

ITEMS

PAGE

4.1	Mass flow rate	22
4.2	Total heat loss by radiator with cooled fan	23
4.3	Total heat loss by radiator without cooled fan	23
4.4	Radiator specification (Nissan)	28
4.5	Radiator specification (Ford)	29
4.6	Radiator specification (Mitsubishi)	29
4.7	Radiator specification (Honda)	30
4.8	Radiator specification (Wira)	30
4.9	Compactness ratio	31
A-1	Time flow	49
A-2	Volume flow rate	49
A-3	Radiator with cooled fan (Nissan)	50
A-4	Radiator with cooled fan (Ford)	50
A-5	Radiator with cooled fan (Mitsubishi)	51
A-6	Radiator with cooled fan (Honda)	51
A-7	Radiator with cooled fan (Wira)	52
A-8	Temperature Drop for radiator with cooled fan	52
A-9	Pressure Drop for radiator with cooled fan	53

A-10	Radiator without cooled fan (Nissan)	53
A-11	Radiator without cooled fan (Ford)	54
A-12	Radiator without cooled fan (Mitsubishi)	54
A-13	Radiator without cooled fan (Honda)	55
A-14	Radiator without cooled fan (Wira)	55
A-15	Temperature Drop for radiator without cooled fan	56
A-16	Pressure Drop for radiator without cooled fan	56
A-17	Comparison for Temperature Drop	57
A-18	Comparison for Pressure Drop	58
A-19	Comparison Total Heat Loss	59

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE NO	D. ITEMS	PAGE
2.1	Under hood air flow profiles in a typical passenger car	4
2.2	Schematics of the heat transfer characteristics of the	
	radiator test system	6
2.3	Effects of inlet coolant temperature and volume	
	flow rate on heat dissipation rate	6
2.4	Effects of the coolant volume flow rate and air velocity	
	on Heat dissipation rate	6
2.5	Effects of air velocity and coolant volume flow rate on	
	air Pressure drop	7
2.6	Effects of inlet coolant temperature and volume flow	
	rate on coolant pressure drop	7
2.7	Effects of coolant volume flow rate and air velocity on	
	coolant pressure drop	7
2.8	Radiator	12
3.1	Schematics of engine radiator performances test rig	18
3.2	Louvered fins	20
3.3	Dimensions of radiator	20
4.1	Total heat loss by Nissan radiator	24
4.2	Total heat loss by Ford radiator	25
4.3	Total heat loss by Mitsubishi radiator	25
4.4	Total heat loss by Honda radiator	26

4.5	Total heat loss by Wira radiator	26
4.6	Comparison of total heat loss for each radiator (With fan)	27
4.7	Comparison of total heat loss for each radiator	
	(Without fan)	27
4.8	Effect of compactness ratio on heat dissipation	32
4.9	Effect of number water tube on heat dissipation	33
4.10	Effect of frontal area on heat dissipation	33
4.11	Effect of coolant volume flow rate on heat	
	dissipation rate (Nissan)	35
4.12	Effect of coolant volume flow rate on heat	
	dissipation rate (Ford)	35
4.13	Effect of coolant volume flow rate on heat	
	dissipation rate (Mitsubishi)	36
4.14	Effect of coolant volume flow rate on heat	
	dissipation rate (Honda)	36
4.15	Effect of coolant volume flow rate on heat	
	dissipation rate (Wira)	37
4.16	Effect of temperature drop on heat dissipation	
	rate (Nissan)	38
4.17	Effect of temperature drop on heat dissipation	
	rate (Ford)	38
4.18	Effect of temperature drop on heat dissipation	
	rate (Mitsubishi)	39
4.19	Effect of temperature drop on heat dissipation	
	rate (Honda)	39
4.20	Effect of temperature drop on heat dissipation	
	rate (Wira)	40
4.21	Effect of coolant volume flow rate on pressure	
	drop(Wira)	41
4.22	Effect of coolant volume flow rate on pressure	
	drop(Ford)	42

4.23	Effect of coolant volume flow rate on pressure	
	drop(Mitsubishi)	42
4.24	Effect of coolant volume flow rate on pressure	
	drop(Honda)	43
4.25	Effect of coolant volume flow rate on pressure	
	drop(Wira)	43
C-1	Schematics test rig	70
C-2	Pressure gauge	71
C-3	T Joint	71
C-4	Connection pressure gauge and hose	72
C-5	Thermocouple	72

LIST OF SYMBOLS

SYMBOL

DEFINATION

Q	Heat Loss [kJ]
m _c	Coolant flow rate [kg/s]
ΔΤ	Temperature drop [K]
$\Delta P_{coolant}$	Coolant Pressure drop [Pa]
ΔP_{air}	Air pressure drop [Pa]
Qrej	Heat rejection energy flow rate [kJ/s]
Qair	Heat energy loss to the ambient [kJ/s]
Qrad	Radiator heat transfer rate [kJ/s]
T _{eng}	Engine coolant temperature [K]
Tair	Intake air temperature [K]
T _{stat_min}	Minimum temperature for thermostat opens [K]
T_{stat_max}	Maximum temperature of thermostat to max lift [K]
T _{eng_out}	Coolant temperature input to the radiator [K]
T _{eng_in}	Coolant temperature at radiator to engine [K]
Lh	louver height
LI	louver length
Lp	louver pitch
¢pL	radiator core pressure drop
f	core friction factor
Re	Reynolds number
Т	time[s]
U	Overall heat transfer coefficient

h	Heat transfer coefficient [W/m2K]
k	Thermal conductivity [W/mK]
x	Tube thickness[m]

xvi

LIST OF APPENDIX

APPENDIX	INO. ITEMS	PAGE
А	Data Result	49
В	Calculations	60
С	Test Rig	70

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 Overview

A radiator is an important component in the cooling system of vehicles. Its main function is to radiate the excessive heat from the engine to the ambient so as to ensure reliable operation of the engine. Thus a lot of investigations into improving the operating characteristic performances of radiators have been conducted. Until now, the study methods concerned have been mainly theoretical analysis methods and experimental methods. Nowadays, the latter are popular for studying the complexity of a radiator's structural and the variability of its operating situations. The preceding research provides a basic for the theoretical analysis of heat performance and structural refinement of radiator. In this study, experimental research has been carried out on lab test of engine radiator performance. The results indicate that it is useful to improve radiator performance. The existing literature indicate that radiator's working performance includes heat dissipation rate, coolant pressure drop and air pressure drop mainly depend on it's operating parameters such as inlet coolant temperature, coolant flow volume rate and air velocity under given structural parameters and geometry.

1.2 Problem statement

- a. The existing Proton Wira engine sometimes gets overheated due to the radiator not functioning up to the standard expectations.
- b. Most cars designed today focused more on its aerodynamics, safety and styling factor and tend to forget about the significance of radiator. This causes the air flow velocity profile at the radiator face to be highly distorted, leading to potentially reduced airflow volume for heat dissipation.

1.3 Objectives of study

The main objective of this study is to acquire performance data of automotive radiator such as temperature, pressure and flow rate by using engine capacity of 1.5L. Collected data can be related between temperature, pressure, velocity and flow rate. The effects of operating parameters to radiator performances can be determined. From the data obtained, the best radiator to suite with engine for Proton Wira with capacity 1.5L can be determined.

1.4 Scope of study

In the work reported, experimental study has been carried out on the engine radiator performance test by using difference types of radiator. The scope of study involves various radiators with different construction material, design, compactness and sizes are fitted with or without fan assisted air flow while the engine is running at different revolution per minute. Also, this project is expected to initiate further in-depth study of each element effecting automotive radiator performance. Performance data can then be documented to assist our radiator manufactures to produce higher performance radiator for our national car industry.

CHAPTER II

LITERATURE REVIEW

S.P. Parsons state that the drop in static pressure in the air stream through a cellular radiator, and the pressure gradient in the air tubes, are practically proportional to the square of the air flow, for a given air density. The observed values of skin friction agree approximately with those found by other investigators for long pipes. These facts appear to indicate that the air flow is turbulent, even in the short tubes of the radiator. The difference between head resistance per unit area and the fall of static pressure through the air tubes of a radiator, noted by various observes is shown to be apparent rather than real. Radiators different types differ widely in the amount of contraction of the jet at entrance.

EY Ng and others described that the high complexity of vehicle front-end design, arising from considerations of aerodynamics, and styling, causes the air flow velocity profile at the radiator face to be highly distorted, leading to potentially reduced airflow volume for heat dissipation [Figure 2.1].Consequently, the heat transfer areas of radiator may be poorly utilized. It is emphasized that the radiator cooling air flow plays a key role in the radiator's heat transfer process, since the overall heat transfer coefficient of a radiator is predominantly influenced by the air-side heat-transfer coefficient. However; there are several factors that make measurement of cooling air flow very difficult. The factors include:-

- 1. The compactness of engine compartments
- The complexity of air velocity, pressure and temperature fields in engine compartments.
- The air flow velocities through radiators are typically low(of the order of a few meters per second)
- The unknown flow directions(in some cases there are major separation sand flow reversals)
- 5. The cooling system location in an enclosed area, making measurement access difficult.

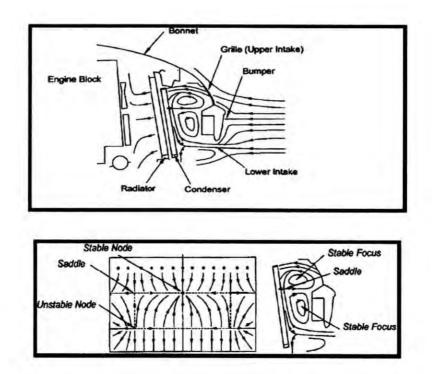


Figure 2.1: Under hood air flow profiles in a typical passenger car (reprinted from NG).

It is observed that airflow has non-uniformly distributed over the radiator and it was also noted that the bumper wake significantly influenced the cooling air flow with very limited from through the region of the core in the wake of the bumper bar.

A. Witry and members state that for the internal flow, heat transfer augmentation caused by the repetitive impingement against the dimple obstructions renders such geometries equal to those of aerospace industry pin-fin whilst lowering pressure drops due to the wider cross-sectional areas. For the external flows, the wider and wavy nature of the surface area increases heat transfer leaving the addition of extra surface roughness add-ons as an option.

J A Chen described that existing literature indicates that the radiator's working performance including heat dissipation rate, coolant pressure drop and air pressure drop mainly depend on it's operating parameters such as the inlet coolant temperature, coolant flow volume rate and air velocity under given structural parameters and geometry. In order to investigate the effects of inlet coolant temperature, coolant volume flow rate and cooling air velocity on heat performances of the radiator, the experimental scheme was designed with the ternary quadratic form polynomial regression combinatorial design method [Figure 2.2]. The regression equations could be obtained by using the optimization technique of experimental design.

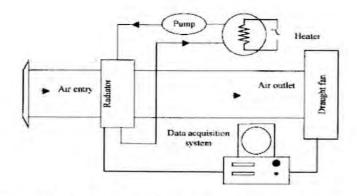


Figure 2.2: Schematic of the heat transfer characteristics of the radiator test system From the result, J A Chen stated the discussions as below:-

1. Effects of operating parameters on heat dissipation rate.

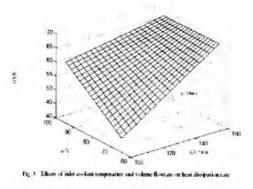
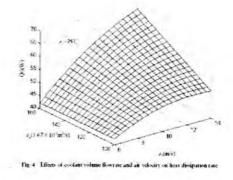
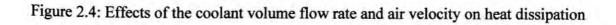




Figure 2.3: Effects of inlet coolant temperature and volume flow rate on heat dissipation

