EFFICIENCY ENERGY STORAGE, FROM KINETIC ENERGY TO ELECTRIC POTENTIAL ENERGY

MUHAMMAD HASNAN BIN ABD GHANI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFICIENCY ENERGY STORAGE, FROM KINETIC ENERGY TO ELECTRIC POTENTIAL ENERGY

MUHAMMAD HASNAN BIN ABD GHANI

This report submitted in partial fulfilment of the requirements for the award of a Bachelor Degree in Mechanical Engineering (Automotive)

Mechanical Engineering Faculty

University Technical Malaysia Melaka

JUNE 2013

🔘 Universiti Teknikal Malaysia Melaka

SUPERVISORS DECLARATION

I hereby declare that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)

Signature	:
Supervisor	: DR.MUSTHAFAH BIN MOHD TAHIR
Date	:

DECLARATION

I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged.

Signature	:
Author	: MUHAMMAD HASNAN BIN ABD GHANI
Date	:

DEDICATION

To my parents, Abd Ghani Bin Ahmad, and Norshida binti Hatim who had gave me financial and moral support, and a greatest thank you to my siblings, my fellow friends, and my supervisor, Dr. Musthafah bin Mohd Tahir, for supporting me.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah for giving me strength to finish up this project. My greatest thank to Universiti Teknikal Malaysia Melaka for providing me a facilities to study and to do this final year project

I would like also to express a million thanks to my supervisor, Dr. Musthafah bin Mohd Tahir, who help me a lot and guide me in order to finish this project. He inspired me to this work greatly. His willingness to motivate and spend the quality time with me had been the biggest contribution to finish this project.

I also would to express my gratitude to my parents especially my parents who had been moral and financial support during this time. I would like thank you to my siblings who always encourage me during this project.

Finally, I would like to thank you my friends for supporting me and do discussion together in order to completing this project.

ABSTRACT

The electric car is propelling by electric motor and use a battery as storage to store the electric current. The UTeM 1 car which is from conventional engine was proposed to be converted into electric vehicle. So, recharging system is important to electric vehicle in order to overcome the major problem for electric vehicle which is the batteries. However, there two system that can recharge the batteries which are alternators and regenerative braking system. The objectives is to choose one either of this system to use as recharging system and the analyses was done by using Matlab Simulink software. The regenerative braking system (RBS) was chosen. From simulation of Matlab analysis, the voltage and the current were determined. From simulation, it had shown how much the Brushless Direct Current Motor (BLDC) can regenerate back the voltage. So, the current and voltage was calculated to get how much the power can regenerative brak to the BLDC motor. Hence, it shows that the BLDC motor can undergo regenerative braking process and can generate back the voltage.

ABSTRAK

Kereta elektrik digerakkan oleh motor elektrik dan menggunakan bateri sebagai simpanan untuk menyimpan arus elektrik UTeM 1 adalah kereta dari enjin konvensional telah dicadangkan untuk ditukarkan kepada kenderaan elektrik. Jadi, sistem pengisian semula elektrik adalah penting untuk kenderaan elektrik bagi mengatasi masalah utama untuk kenderaan elektrik iaitu bateri. Walau bagaimanapun, terdapat dua sistem yang boleh cas semula bateri iaitu alternator dan sistem brek regeneratif. Objektif projek ini adalah untuk memilih salah satu daripada sistem ini untuk digunakan sebagai sistem pengisian dan kemudian melakukan analisis dengan menggunakan perisian Matlab Simulink. Sistem brek regeneratif (RBS) telah dipilih. Dari simulasi analisis Matlab, voltan dan arus telah dapat ditentukan. Dari simulasi, ia telah menunjukkan berapa banyak Brusshless Motor Semasa Langsung (BLDC) boleh mengecas semula kembali voltan. Jadi, arus dan voltan telah dikira untuk mendapatkan berapa banyak kuasa yang boleh dicas semula ke BLDC motor. Oleh itu, ia menunjukkan bahawa motor BLDC boleh menjalani proses brek regeneratif dan boleh menjana kembali voltan.

TABLE OF CONTENT

CHAPTER	TIT	LE	PAGE
	DEC	CLARATION	i
	DED	DICATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABS	TRAK	V
	TAB	BLE OF CONTENT	vi
	LIST	Г OF TABLES	ix
	LIST	Γ OF FIGURES	Х
	LIST	Γ OF SYMBOLS	xiii
	LIST	Γ OF ABBREVIATION	xiv
	LIST	Γ OF APPENDIX	XV
CHAPTER 1	INT	RODUCTION	
	1.1	Project Introduction	1
	1.2	Background	2
	1.3	Problem Statement	3
	1.4	Objectives	3
	1.5	Scopes	3
CHAPTER 2	LIT	ERATURE RIVIEW	
	2.1	Introduction of Electric Vehicle	4
	2.2	Types of Electric Vehicle	6

2.3	Regenerative braking system (RBS)		8
2.4	Working principle of RBS		
2.5	Improv	vement of RBS	11
	2.5.1	Implementation of flywheel in RBS	11
	2.5.2	Implementation of Ultracapacitor	13
		and DC-DC converter in RBS	
2.6	Main o	components in RBS	15
	2.6.1	Electric Motor	16
	2.6.2	Motor Controller	17
	2.6.3	Batteries	18
	2.6.4	Ultracapacitors	19
2.7	Altern	ators	21
2.8	Voltag	ge Rectifiers	23

CHAPTER 3 METHODOLOGY

3.1	Project overview		24
3.2	Flowchart		
3.3	The B	asic for MATLAB and Simulink	29
	3.3.1	Introduction to MATLAB and Simulink	29
	3.3.2	Step to use Simulink	29
3.4	Design	n of RBS system by using MATLAB	32
	3.4.1	The Two Wheel Traction Model	32
	3.4.2	Wheel Dynamics Equation	34
	3.4.3	Brake System Model	36
	3.4.4	Brake Friction Characteristics	38
	3.4.5	Tractive Properties of Tire/road interface	39
	3.4.6	Vehicle Load Distribution	41
	3.4.7	Drag Forces	42
	3.4.8	Equation of Motion	43
	3.4.9	Power Trains	44
3.5	Param	eters of UTeM 1 Car	47

	4.1	Graph Simulation of maximum velocity for	48
		UTeM 1 car	
	4.2	Graph Simulation of RBS	49
	4.3	Calculation of Power in RBS	54
	4.4	Important Findings	55
CHAPTER 5	CON	NCLUSION AND RECOMMENDATION	
	5.1	Conclusion	56
	5.2	Recommendation	57
REFERENCES			58
APPENDIX			61

LIST OF TABLES

TITLE	PAGE

NO

2.1	Comparison between electric vehicles	6	
2.2	Working principle of electric motor	16	
	Comparison between large electrolytic		
2.3	capacitor, Ultracapacitor paralleled with	20	
2.3	electrolytic capacitor and DC/DC controlled	20	
	ultracapacitor module.		
3.1	Comparison between alternator and	28	
5.1	regenerative braking	20	
3.2	Component of Simulink library browser	31	
3.3	Type of road condition	40	
3.4	Equivalent model Parameters	40	
4.1	The PID controller	49	
	Component and Description of UTeM 1		
4.2	electric vehicle	55	
4.3	Results of Regenerative Braking System	55	

LIST OF FIGURES

NO TITLE PAGES

1.1	UTeM 1	2
2.1	The schematic diagram of electric vehicle	5
2.2	Mechanical energy converts to electrical energy	8
2.3	Regenerative action during braking	9
2.4	Normal forward driving condition	10
2.5	Flywheel system	11
2.6	Ultracapacitor system	13
2.7	The regenerative braking in electric car	15
2.8	Brushless controller	17
2.9	Lithium ion battery	18
2.10	Stator	21
2.11	Rotor	21

2.12	Diode	22
2.13	Voltage rectifier	23
3.1	Flowchart for semester 1	25
3.2	Flowchart for semester 2	26
3.3	Regenerative braking on bicycle	27
3.4	Alternator on bicycle	27
3.5	Results for alternator	28
3.6	Results from 24V DC motor	28
3.7	Open MATLAB software	30
3.8	Simulink library browser	31
3.9	Example and result of simulation	32
3.10	Schematic model of the two wheel traction	33
3.11	The block diagram of the main elements	34
3.12	Main system of wheel dynamics	35
3.13	Front wheel dynamics	36
3.14	Rear wheel dynamics	36
3.15	Main system of the brake	37
3.16	The block diagram of pressure applied	38
3.17	Block diagram of brake friction characteristics	38
3.18	Block diagram of how of the brake was coupled	39
3.19	Matlab simulink of tyre model	41
3.20	Simulink model for load distribution	42
3.21	The simulink model for drag forces	43

3.22	Simulink model for the equation of motion	44
3.23	The Simulink model for regenerative braking in the BLDC motor	45
3.24	CVT	46
3.25	The Simulink model for CVT	47
4.1	The throttle setting for the maximum velocity	48
4.2	Maximum velocity of UTeM 1	49
4.3	Torque was controlled by PID	50
4.4	Throttle setting for BLDC motor	50
4.5	Graph of velocity versus time	51
4.6	Graph of voltage versus time	52
4.7	Graph of current (A) versus time	53

LIST OF SYMBOLS

a	Acceleration
В	Length centre gravity to the front axle
С	Length of centre gravity to the rear axle
C_d	Coefficient of drag
C_r	Coefficient of rolling resistance
d	Distance
h	Height
J_{f}	Moment inertia of front tyre
J_r	Moment inertia of rear tyre
K_{bf}	pressure conversion constant for front
K_{br}	pressure conversion constant for rear
L	Wheelbase length
т	mass
P_{max}	Maximum output power
R_t	Radius of tyre
t	Time
t_e	Endurance time
ν	Velocity

v_{max} Maximum velocity

LIST OF ABBREVIATION

RBS	Regenerative Braking System	
GHGs	Green House Gases	
BEV	Battery electric vehicle	
BLDC	Brushless direct current	
IGBTs	Insulated gate bipolar transistors	
CVT	Continuously variable transmission	
DC	Direct current	
EV	Electric vehicle	
FCV	Fuel cell vehicle	
HEV	Hybrid electric vehicle	
ICE	Internal combustion engine	
COG	Centre of gravity	
RPM	Revolution Per minute	
PHEV	Plug-in hybrid electric vehicle	
UTeM	Universiti Teknikal Malaysia Melaka	

LIST OF APPENDIX

NO APPENDIX PAGES

1.	Gantt Chart	60
2.	CVT of formula Varsity Electric	61
3.	Design of Power train UTeM 1	61
4.	Component of power train in UTeM 1	61

CHAPTER 1

INTRODUCTION

1.1 PROJECT INTRODUCTION

The subject of Final Year Project (PSM), BMCU 4972 and BMCU 4984 had been compulsory to the student in order to fulfil the requirement for the award of degree. The students will supervised by a lecturer during doing the research. At the end of semester, the students had to carry out a presentation about the project that had been done. The students must show the findings and result of the project.

The title for my final project is efficient energy storage from kinetic energy to electric potential energy. Basically, the efficient energy storage from kinetic energy to electric potential energy means that how the energy was recaptures back and used the energy again. So, when this system was used, it can make the car can be drive a little a bit longer. Usually, for conventional car the alternator was used as the component to restore back energy meanwhile for hybrid or electric car the regenerative braking system which the motor act as generator was used. So, there are two ways in order to restore back the energy either by using regenerative braking system (generator) or by using the alternator.

1.2 BACKGROUND

The energy storage is one of the most important in electric vehicle. Nowadays, the pollution had increases and become more serious problem which led to global warming and green house effect. So, the electric car was one of the solutions in order to reduce the pollution. The Universiti Teknikal Malaysia Melaka (UTeM) had produced one conventional car named UTeM 1. However, UTeM 1 was used conventional engine. So, in order to reduce the pollutions and the development of the green technology the UTeM 1 car had been proposed to convert to electric car. The Figure 1.1 shows the UTeM 1 car. However, the problem is how to recharging the battery, since battery is one of the major problem in development of electric vehicle. There are two type of battery charging which are online charging and offline charging. The online charging means the battery was charge during the car was driven while the offline charging means the battery was charge outside the car which is plug in. There are two components in order to recharge the battery by regenerative braking or using the alternators. The principle of regenerative braking and alternators is same which is recuperate the energy by converting the kinetics energy to electric potential energy. From previous thesis shows the alternators had higher efficiency compared to the regenerative braking (Cheong, 2012). However, the experiment was test on bicycle.

Figure 1.1: UTeM 1

🔘 Universiti Teknikal Malaysia Melaka

1.3 PROBLEM STATEMENT

At the 21th century, the automotive industry has post a great challenge in order to reduce the vehicle fuel consumption and emission, these is due to the shortage of fuel resources and worsen air pollution problem. However, the electric car is one of the ways to reduce these problems because it produces zero emission. The electric vehicle also had the major problem which is batteries. So, the recharging system was invented in order to charge the batteries. There are two ways to recharge the batteries by using regenerative braking system or alternators. So, the problem is to choose which one is suitable in electric vehicle which in this project used UTeM 1 as an electric vehicle.

The other problem is the efficiency of recharging batteries. The efficiency of recharging system is important because it can determine how long the car can be driven. The other important of efficiency recharging system, it can be used for other component like lamps of the car and signal of the car.

1.4 OBJECTIVES

• To design the regenerative braking system for UTeM 1.

1.5 SCOPE

- 1. Choose the suitable recharging system for UteM 1 by compare regenerative braking and alternator.
- Design the regenerative braking system that suitable for UTeM 1 by using Matlab Simulink software.
- 3. Analyses the regenerative braking system for UTeM 1 by using Matlab Simulink software.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION OF ELECTRIC VEHICLE

Nowadays, the earth facing three major environmental problems which are global warming, desired energy independence and the need for healthy air. So, the electric car is one of the ways to reduce these problems. Actually, the electric car was popular between the late 19th century and early 20th century where electricity was preferred as automobile propulsion. This is because it provides comfort and ease operation compared to the gasoline cars at that time. However, the advances in internal combustion technology had led to decline in the use of electric propulsion. The development of electric starter especially had led to electric propulsion being ignored. The development of internal combustion such as the greater range of gasoline cars can travel, quicker refuelling times and the development in petroleum infrastructure. The declined of electric propulsion also support by mass production of gasoline vehicle such as Ford Motor Company, which reduces prices of gasoline cars to less than half that equivalent electric cars. However, in recent years people more concerns over the environmental impact of gasoline cars (wikipedia, 2012).

The Electric Vehicle (EV) was reappeared and become important again because the internal combustion engine was creating some problems. The causes of the problems are the emissions that produce from internal combustion are too high. When normal cars burn liquid fuels, such as petrol or diesel, it will produce pollution. This pollution is made up of poisonous gases (emissions) called greenhouse gases (GHGs) which can be harmful to the environment and to our health. These gases include carbon monoxide, oxides of nitrogen, carbon dioxide and methane. Carbon dioxide and greenhouse gases (GHGs) that dangerous can cause problems for our environment through processes such as the Greenhouse Effect or global warming. The green house effect can cause the earth become warm and warmer over a long period time. This is because the hot air is trapped in the earth. These are support by the higher gasoline prices, improvements in battery technology (transport.vic.gov.au, 2012). The electric vehicle (EV) is an automobile that is propelled by one electric motor or more by using the electrical energy which is stored in batteries or the other storage energy device. The function of electric motors to create strong and give electric cars instant torque while had a smooth acceleration (Sperling, 2009). The Figure 2.1 shows the schematic diagram of electric vehicle. The battery as voltage supplies the energy to the electric direct current (DC) motor to propel the car. The motor controller functions to control the voltage that needed in motor electric. The continuous variable transmission (CVT) functions as transmission to shift gear in electric vehicle.

Figure 2.1: The schematic diagram of electric vehicle

🔘 Universiti Teknikal Malaysia Melaka

2.2 TYPES OF ELECTRIC VEHICLE

The EV can divide into three types which are Battery electric vehicle (BEV), Hybrid electric vehicle (HEV) and Fuel Cell electric vehicle (FCV). BEV is a type of EV that used chemical energy stored in battery packs. BEV used electric motor and motor controls for propulsion instead of ICE. HEV is a combination of ICE propulsion system and electric propulsion system. HEV also had a better fuel economy and performance compared to the ICE. HEV also can functions as EV as FCV is a type of electric which use hydrogen. It uses fuel cell to produce well. electricity. Then, electricity will supply power to an electric motor using hydrogen and oxygen from the air. The Table 2.1 below shows the comparison between these three electric vehicles (Chan, 2007):

Types of EV	Battery EV	Hybrid EV	Fuel Cell EV
	• Electric motor	Electric motor	• Electric motor
	drives	drives	drives
Propulsion		• Internal	
		combustion	
		engine	
	• Battery	• Battery	• Fuel cells
	• Ultracapacitor	• Ultracapacitor	• Need battery or
Energy		• ICE generating	ultracpacitor to
System		unit	enhance power
			density for
			starting
	• Electric grid	Gasoline	• Hydrogen
	charging	stations	• Hydrogen
Energy source	facilities	• Electric grid	production and
&		charging	transportation
infrastructure		facilities (for	infrastructure
		plug in hybrid)	

Table 2.1: Comparison between electric vehicles

