raf

0000043388

Design & implementation of pick & place and storage systems application using fanuc robot & electro-pneumatic systems / Mohd Nizam Abu Seman.

DESIGN & IMPLEMENTATION OF PICK & PLACE AND STORAGE SYSTEMS APPLICATION USING FANUC ROBOT & ELECTRO-PNEUMATIC SYSTEMS

MOHD NIZAM BIN ABU SEMAN

MAY 2007

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Control, Instrumentation & Automation)

Signature

Supervisor's Name

: ENCIK MASLANBIN ZAINON

Date

: MAY 2007

DESIGN & IMPLEMENTATION OF PICK & PLACE AND STORAGE SYSTEM APPLICATION USING FANUC ROBOT & ELECTRO-PNEUMATIC SYSTEMS

MOHD NIZAM BIN ABU SEMAN

Thesis submitted in accordance with the partial requirements of the
Universiti Teknikal Malaysia Melaka for the
Bachelor of Electrical Engineering
(Control, Instrumentation & Automation)

Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka

MAY 2007

DECLARATION

I hereby, declare this thesis entitled "Design & Implementation of Pick & Place and Storage System Application Using Fanuc Robot & Electro-Pneumatic Systems " is the result of my own research and design except as cited in the references.

Signature

Name

: MOHD NIZAM BIN ABU SEMAN

Date

DEDICATION

For my beloved mother, Wan Zainab Bte Che Mat and father, Abu Seman Bin Mohamad Saad.

ACKNOWLEDGEMENTS

Alhamdullilah, firstly I am grateful to almighty Allah S.W.T because at last I have finished my Bachelor Degree Project 2 (PSM 2) and my report without any problem. It is difficult to finish this Bachelor Degree Project 2 (PSM 2) report without the help.

Secondly, I would like to thank to my beloved family because gave me an actuation and moral support since I was studying in UTeM. My supervisor En. Maslan Bin Zainon because give me a lot of advices and ideas and automatically improve my knowledge and skills in industrial automation and robotics. Also to the staffs from Asian Autotec Sdn Bhd because help me in solving several problems in this project.

Not forgotten to all my friends that helping and give me a moral support. Finally, to all individuals where involved in this Bachelor Degree Project 2 (PSM 2) which I have not mentions their name. Without all of you, this report will not be finished successfully.

Thank you.

ABSTRACT

This project is about the design and implementation of a pick & place application and storage system. It comprises of integration between industrial robotic, programmable logic controller (PLC) and electro-pneumatics system. This combination will produce a perfect automation system. The functions of the system are for loading, pick & place, sorting and storing metal and non-metal work-piece. It is divided into several stations, which are the FANUC LR Mate 200iB Robot used to sort the work-piece and the loading process, which is applied using electro-pneumatics system. These stations are controlled using programmable logic controller (PLC) as a master controller for the system and R-J3iB controller for the FANUC robot as a slave.

ABSTRAK

Projek ini adalah mengenai merekabentuk dan pelaksanaan bagi aplikasi ambil & letak (pick & place) dan sistem penyimpanan (storage system). Ia terdiri daripada integrasi antara robot industri, pengawal logik aturcara (PLC) dan sistem elektro-pneumatik. Kombinasi ini akan menghasilkan satu sistem automasi yang sempurna dan lengkap. Fungsi sistem ini adalah untuk memuat (loading), ambil & letak (pick & place) serta mengasing bahan kerja logam dan bukan logam. Ia adalah terbahagi kepada beberapa stesen, di mana robot FANUC LR Mate 200iB digunakan untuk mengasing bahan kerja dan proses memuat diaplikasikan menggunakan sistem elektro-pneumatik. Stesen-stesen ini adalah dikawal menggunakan pengawal logik aturcara (PLC) yang mana ia digunakan sebagai pengawal utama (master) untuk sistem ini dan pengawal R-J3iB bagi robot FANUC adalah hamba (slave).

ABSTRAK

Projek ini adalah mengenai merekabentuk dan pelaksanaan bagi aplikasi ambil & letak (pick & place) dan sistem penyimpanan (storage system). Ia terdiri daripada integrasi antara robot industri, pengawal logik aturcara (PLC) dan sistem elektro-pneumatik. Kombinasi ini akan menghasilkan satu sistem automasi yang sempurna dan lengkap. Fungsi sistem ini adalah untuk memuat (loading), ambil & letak (pick & place) serta mengasing bahan kerja logam dan bukan logam. Ia adalah terbahagi kepada beberapa stesen, di mana robot FANUC LR Mate 200iB digunakan untuk mengasing bahan kerja dan proses memuat diaplikasikan menggunakan sistem elektro-pneumatik. Stesen-stesen ini adalah dikawal menggunakan pengawal logik aturcara (PLC) yang mana ia digunakan sebagai pengawal utama (master) untuk sistem ini dan pengawal R-J3iB bagi robot FANUC adalah hamba (slave).

TABLE OF CONTENT

CHAPTER		CONTENT	PAGE
		DEDICATION	iii
		ACKNOWLEDGEMENTS	iv
		ABSTACT	V
		ABSTRAK	Ivi
		TABLE OF CONTENT	vii
		LIST OF FIGURE	x
		LIST OF TABLE	xiii
		LIST OF APPENDICES	xiv
		LIST OF ABBREVIATIONS	xv
I		INTRODUCTION	
	1.1	Introduction	1
	1.2	Project Overview	1
	1.3	Problem Statements	2
	1.4	Objectives of the Project	2
	1.5.	Project Scope	3
П		LITERATURE REVIEW	
	2.1	First Review: FESTO Storing Station Training Kit	4
	2.2	Second Review: Rhino Robot Training Kit	5
	2.3	Third Review: 4-Axis SCARA Robot Training Kit	6
	2.4	Conclusion	7
	2.5	Theory	8
		2.5.1 Sensor	8
		2.5.1.1 Inductive Proximity Sensor	8

HAPIER		CONTENT	PAGI
		2.5.1.2 Capacitive Proximity Sensor	10
		2.5.1.3 Magnetic Sensor (Reed Switch)	11
		2.5.1.4 Diffuse Sensor	12
		2.5.1.5 Sourcing and Sinking	13
		2.5.2 Motor	15
		2.5.3 Conveyor	17
		2.5.4 Pneumatic Cylinder	18
		2.5.5 Pneumatic Solenoid Valve	19
		2.5.6 Programmable Logic Controller (PLC)	20
		2.5.6.1 Introduction	20
		2.5.6.2 Programming Languages	21
		2.5.6.3 Digital Input Modules	23
		2.5.6.4 Digital Output Modules	24
		2.5.7 Industrial Robot	25
		2.5.7.1 Introduction	25
		2.5.7.2 Communications	26
		2.5.7.3 Robot Structures And Characteristics	28
		2.5.7.4 Power Sources	29
		2.5.7.5 End Effectors	30
Ш		PROJECT BACKGROUND	
	3.1	Project Background	31
	3.2	System Concept and Algorithm	32
		3.2.1 Station 1: Loading Process	32
		3.2.2 Station 2: Sorting Process	33
		3.2.3 Station 3: Storing Metal Process	34
		3.2.4 Station 4: Storing Non-Metal Process	34
IV		METHODOLOGY	
	4.1	Project Methodology	39
	4.2	Project Implementation	39

CHAPTER		CONTENT	PAGE
		4.2.1 Design and Drawing	39
		4.2.2 Hardware Development & Implementation	40
		4.2.3 Software Development & Implementation	40
		4.2.4 Hardware for the System	41
		4.2.4.1 Programmable Logic Controller (PLC)	41
		4.2.4.2 Industrial Robot	42
		4.2.4.3 Pneumatic System Equipments	43
v		RESULT	
	5.1	Hardware Implementation	46
	5.2	Software Implementation	50
		5.2.1 I/O Assignment	50
		5.2.2 PLC Programming	55
		5.2.3 Pneumatic Connection Diagram	65
	5.3	Financial Costing	66
VI		DISCUSSION	
	6.1	Discussion	68
	6.2	Problems Encountered	68
		6.2.1 Mechanical	68
		6.2.2 Electrical	69
		6.2.3 Robotics	70
	6.3	Suggestions for Improvement	71
VII		CONCLUSION	
	7.1	Conclusion	72
		*	
		REFERENCES	73
		GANTT CHART	74
		APPENDICES	75

LIST OF FIGURE

FIGURE	TITLE	PAGE
2.1	FESTO Storing Station Training Kit	5
2.2	Rhino Robot Training Kit	6
2.3	4-Axis SCARA Robot Training Kit	7
2.4	Block Diagram of An Inductive Sensor	8
2.5	Inductive Proximity Sensor Family	9
2.6	Series And Parallel Connection	10
2.7	Block Diagram of Capacitive Sensor	11
2.8	Siemens Capacitive Proximity Sensor	11
2.9	Magnetic Sensor (Reed Switch)	12
2.10	Operating Range of Diffuse Sensor	12
2.11	PNP (Sourcing) Sensor Connection	13
2.12	PNP Sensor (Sourcing) Connected To PLC Input	13
2.13	NPN (Sinking) Sensor Connection	14
2.14	NPN Sensor (Sinking) Connected To PLC Input	14
2.15	Direct On Line Starter (D.O.L)	16
2.16	Factory Belt Conveyor (AC Motor Drives)	17
2.17	Single Acting Pneumatic Cylinders	18
2.18	3/2 Way Solenoid Valve	19
2.19	Pneumatic Component Connections	19
2.20	PLC System Overview	21
2.21	Ladder Diagram For Mitsubishi PLC	22
2.22	Instruction List Language	22
2.23	Sequential Function/Grafcet	23
2.24	Typical Shared Return Path and I/O Current Path	24
2.25	Applications of PLC	24

FIGURE	TITLE	PAGE
2.26	PLC Programming	25
2.27	Integration Between Robot and PLC	27
2.28	Networks Between Robot Via Ethernet	28
2.29	Jointed Arm Robot Structure	29
2.30	Pneumatics Gripper	30
3.1	Whole System	32
3.2	Process Algorithm Flow Chart	35
3.3	Process Algorithm Flow Chart (Continued)	36
3.4	Process Algorithm Flow Chart (Continued)	37
4.1	Methodology Flow Chart	38
4.2	NAiS PLC Console	41
4.3	FANUC Robot Teach Pendant	41
4.4	I/Os Terminal for NAiS FP1 PLC	41
4.5	NAIS FP1 PLC	42
4.6	FANUC LR Mate 200iB Robot	42
4.7	CRM 79 I/O Address	42
4.8	R-J3ib Controller	43
4.9	I/O Robot (CRM79 & PLC)	43
4.10	5/2 Way Internal Solenoid Valve	43
4.11	5/2 Way Solenoid Valve (Double Solenoid)	43
4.12	Vacuum Generator	44
4.13	Air Cylinder	44
4.14	Vacuum Cup	45
5.1	Front View	46
5.2	Side View	47
5.3	Top View	47
5.4	Control Panel	47
5.5	Motor Conveyor	48
5.6	Station 1	48
5.7	Station 2	48
5.8	Station 3	49

FIGURE	TITLE	PAGE
5.9	Station 4	49
5.10	The Ladder Diagram	55
5.11	Mechanical Drawing Machine Frame	61
5.12	Power Circuit and Control Circuit	62
5.13	PLC Input Connection	63
5.14	PLC Output & Robot Input Connection	64
5.15	Robot End Effector (Vacuum Cup)	65
5.16	Cylinder Pusher	65

LIST OF TABLE

TABLE	TITLE	PAGE
2.1	Advantages and Disadvantages of Inductive Sensor	9
2.2	Advantages and Disadvantages of Capacitive Sensor	10
3.1	How the Sensor Determine the Material	33
5.1	Input I/O Assignment	50
5.2	Output I/O Assignment	51
5.3	Internal Relay Assignment	52
5.4	Special Relay Assignment	54
5.5	Timer/ Counter Assignment	54
5.6	Electrical and Electronics Equipments and Components	66
5.7	Mechanical Equipments and Components	67
5.8	Miscellaneous	67
5.9	Total Costing	67

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Instruction List (FPWIN GR2)	75
В	PLC Ladder Diagram (CX-Programmer)	81
C	PLC NAiS FP1 Data Sheet	87
D	FANUC Robot	92

LIST OF ABBREVIATIONS

PLC - Programmable Logic Controller

PC - Personal Computer

CPU - Central Processing Unit

RAM - Random Access Memory

ROM - Read Only Memory

DOL - Direct On Line

AC - Alternating Current

DC - Direct Current

I/O - Input/Output

IL - Instruction List

SFC - Sequential Function Chart

RCCB - Residual Current Circuit Breaker

MCB - Miniature Circuit Breaker

MIG - Metal Inert Gas

LED - Light-Emitting Diode

CAD - Computer Aided Design

LS - Limit Switch

FRL - Filter, Regulator & Lubricator

CIM - Computer Integrated Manufacturing

SCADA - Supervisory Control And Data Acquisition

CNC - Computer Numerical Control

G - Good

NG - Not Good

CHAPTER 1 INTRODUCTION

1.1 Introduction

Industrial automation is the use of robotic devices to complete manufacturing tasks. Currently, industrial automation is becoming increasingly important in the manufacturing process because computerized or robotic machines are capable of handling repetitive tasks quickly and efficiently. Machines used in industrial automation are also capable of completing any tasks that are not capable to workers. In this project, industrial robot is used to execute the material handling process. Therefore, it can become a prototype of integrated system, which comprises of industrial robot and programmable logic controller (PLC) in the manufacturing industry.

1.2 Project Overview

The project is to implement the hardware of pick & place application and storage system. The software application also is used in this project. The most important things in this project are the integration between FANUC LR Mate 200iB robot, programmable logic controller (PLC) and electro-pneumatics system. The NAiS FP1 PLC is used to control the whole sequences of the system. This project is divided into two sections, which are mechanical part and electrical part. The mechanical parts are consisting of mechanical drawing, measuring, welding and fabrication process. The electrical parts are consisting of electrical drawing, electrical wiring and programming.

1.3 Problem Statements

This system is designed as a training kit for the automation and mechatronic students. There are several reasons why this system is designed. The faculty's laboratory just has only a few training kit for the storage system, so this system can be used as a prototype of the storage system in industrial area. The FANUC Robot training kit at the laboratory is too simple. It has no integration with other external devices such as indicator, conveyor, sensors etc. That why the training kit is looked insipid. Therefore, this system is designed to be integrated with others system that will make the FANUC Robot training kit more sophisticated. In the industry especially in automotive industry, most of the system at the factory is using the integrated system between programmable logic controller (PLC) and industrial robotics. Thus, this system can be used as an introduction to students about the integrated system between PLC and industrial robot in the industry.

1.4 Objectives of the Project

- 1. To make the system as a training kit machine
- 2. To implement the pick & place and the storage system
- To implement the hardware installation, electrical wiring and mechanical mounting to control the sequences of the system
- 4. To be able to make programming for the PLC and Industrial Robot
- To acquire experience in system design, electrical and mechanical drawing, wiring and troubleshooting

1.5 Project Scope

Generally, all projects have their own scope or limitation as a guideline. The project scope for implementation this project is:

- Design and develop the complete automated system that is used to apply the pick & place and storage system in term of hardware and software development.
- ii. The hardware development & implementation consists of the mechanical structure, FANUC LR Mate 200iB robot, electro-pneumatics system, PLC, sensor, etc. The PLC will be the main controller for the system.
- iii. The programming or software development & implementation consists of FPWIN GR2 software for NAiS FP1 PLC and FANUC robot programming using teach pendant.

CHAPTER 2 LITERATURE REVIEW

This chapter is consisting of explained and review the past projects that have been done before. It is consist of the products in the market and training kit at the Robotic & Automation laboratory in Faculty of Electrical Engineering, UTeM. Beside that, this chapter is contained about the theory of components, equipments and programming languages that is used in the project.

2.1 First Review: FESTO Storing Station Training Kit

The Storing station training kit places work-pieces in and takes work-pieces out of storage. The station is equipped with three storage levels, with a level each for six red, six silver and six black work-pieces. The work-pieces are gripped using a pneumatic gripper. The linear movement is executed using a linear cylinder. The rotary movement is performed by an electrical servo drive with integrated controller. The stroke movement is executed using an electrical linear axis with separate controller. During placement into storage, a work-piece inserted in the Holder module is detected using the colour sensor. The work-piece is placed in the next free compartment in the corresponding storage level based on the colour. Upon removal from storage, the workpieces are transported from the shelf compartments to the downstream station. The purposes of the training kit are to introduce the students about the sensor technology, mechanical system, pneumatics system, PLC, drive technology, etc. The sensor technology are consists of knowledge about application of colour sensor and limit switches. For the pneumatics system, it is consists of knowledge about pneumatic components, pneumatic grippers and pneumatic linear drives. Beside that, the students will be introduced about the configuration and parameterization of electrical drives,

application of drive controllers, adjustment of speed and acceleration profiles and the teaching of positions in the drive technology. The main controller for the training kit is a Siemens-S7 programmable logic controller (PLC) that only used 16 digital I/O, which are 8 for inputs and 8 for outputs. The operating pressure for the pneumatics system is 600 kPa (6 bar) and the supply voltage of the training kit is 24Vdc.

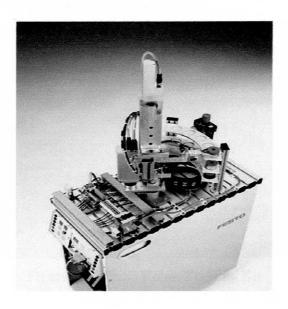


Figure 2.1: FESTO Storing Station Training Kit

2.2 Second Review: Rhino Robot Training Kit

The Rhino robot training kit is designed for the Faculty of Electrical Engineering, UTeM that is used for the robotic or automation subject. The purpose of the training kit is to introduce the students about the basic operation and system of industrial robot. It is consists of Rhino robot, conveyor, simple jigs, rotary indexing table, inductive proximity sensor, capacitive proximity sensor and work-pieces. The cylindrical metal aluminum is used for the work-pieces. This is because it is easier for the robot to grip the cylindrical work-piece compare to cube work-piece. Sensors are placed at the beginning and the end of the conveyor which is the inductive sensor is used to start the conveyor and capacitive proximity sensor is used to stop the conveyor after it sense the work-piece. The direct on line (DOL) connection is used as a motor starter for the AC motor of the conveyor by

using the contactor. The rotation Rotary indexing table is driven using the stepper motor. In order to make the robot grip the work-piece at the accurate point, simple jigs is used to fix work-piece. Rhino robot training kit also can be integrated to other external devices such as PLC, indicator, etc. This is because there is an I/O port at the robot controller. The sequences of the robot are created using teach pendant or Robotalk software. Supply voltage for the training kit is 240Vac.

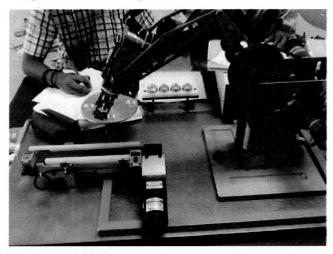


Figure 2.2: Rhino Robot Training Kit

2.3 Third Review: 4-Axis SCARA Robot Training Kit

SCARA robots are specifically designed for pegboard type assembly and are heavily used in the electronics industry. The robot is quite small and capable of operating very accurately and at high speed. It is used for assembly, palletisation and machine loading. The SCARA training kit is designed as a prototype and to introduce the students about the system and its application in the industry area. It is consists of SCARA Rhino robot, jigs, inductive proximity sensor, photo sensor, work-pieces and the goal boxes. The work-pieces shapes are cylindrical and have a hole at the center. There are different colors and materials of the work-pieces, which are black, white and metal color. The black work-pieces are made from metal aluminum and teflon, white work-pieces are made from teflon and the metal color work-pieces are made from aluminum. The jig is used to fix the work-piece from any movements. It will make the robot can grip the work-piece at the accurately. For the sensor application, inductive