"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor Mechanical Engineering (Thermal – Fluids)"

Signature Name of Supervisor Date

THE BOON TUAN 12/12/2005

HEAT TRANSFER FROM THE FINNED SURFACE

FREDDY LOY HOCK BOO

A thesis submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Mechanical Engineering (Thermal – Fluids)

Faculty of Mechanical Engineering Kolej Universiti Teknikal Kebangsaaan Malaysia

November 2005

"I declared that this thesis entitled 'Heat Transfer from the Finned Surface' is the result of my own research except as cited in reference"

> Signature Name of Candidate Date

FREDOY Loy Hock BOD 12/12/2005

ii

Specially dedicated to my family, girl friend, friends and companion

•

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest appreciations and thanks to those who help in accomplishing my final year project. Without their help, the completion of this project will not be possible. I would like to express my sincere thanks to Mr. Tee Boon Tuan, my final year project supervisor, for his sound advices, supports and guidance while the whole project was carried out. His ideas were very inspirational and helpful not only in my project but also in my way of thinking and analyzing problem.

I would like to thank all the FKM staff and technicians who continuously provided lab facilities and equipment for me to develop this project. Special thanks for them, which make my project, can completely done. I would also like to thank all my friends for the supports and encouragement they give though out the development of my thesis. Last but not least, I would like to dedicate my project to my parents, who guided me, cared for me and encouraged me all the time.

ABSTRACT

The purpose of this study is to investigate heat transfer characteristics by free convection from extended surface. The project aim to evaluate the corresponding heat loss from finned surface and the parameter for the finned surface that affect the heat transfer characteristic namely height, width, spacing, diameter, thermal conductivity, base and surrounding temperature. Two experiments will be carried out involving plate fin and pin fin experiment. Comparison between the different temperature dissipation along the fins from the plate and pin fins experiment on different parameter has being carried out for this study. Different temperature carries out the different efficiency, heat transfer and heat transfer coefficient. Effect of the Nusselt number and Rayleigh number in heat transfer along the fins are also being carried out in this research.

ABSTRAK

Tujuan bagi kajian ini adalah untuk menyelidik ciri-ciri pemindahan haba daripada permukaan sirip dengan olakan bebas. Kajian ini adalah untuk menilai kehilangan haba daripada permukaan sirip dan parameter permukaan sirip yang mempengaruhi ciri-ciri pemindahan haba seperti ketinggian, ketebalan, ruang antara sirip, diameter, konduktiviti terma, suhu tapak plat dan suhu persekitaran. Dua eksperimen yang akan dilaksanakan adalah eksperimen sirip lurus dan spina. Perbandingan experimen di antara perbezaan suhu mengalir menerusi sirip pada ciriciri yang berlainan juga dikaji dalam kajian ini. Perbezaan suhu membawa kepada perbezaan kecekapan, pengaliran haba dan pemalar pemindahan haba. Pengaruh daripada number Nusselt dan number Rayleigh dalam pengaliran haba permukaan sirip juga dikaji dalam kajian ini.

CONTENT

ITEM

	0.442
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENT	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF GRAPH	xvi
LIST OF SYMBOLS	xvii

1

CHAPTER

INTRODUCTION

2
3
3
4
5

PAGE

2.1 Introduction Extended Surface	6
2.2 The Plate Fin	7
2.3 The Pin Fin	8
2.4 Heat Sinks	10

LITERATURE REVIEW

3.1 Free Convection Heat Transfer from Vertical	12
Fin-Arrays by David and James	
3.1.1 Methodology	13
3.1.2 Instrumentation	13
3.1.3 Result	14
3.2 Heat Transfer Characteristics for a Plate Fin by	17
Garg and Velusamy	
3.2.1 Result	17
3.3 Enhanced Heat Transfer, Missing Pin, and	18
Optimization For Cylindrical Pin Fin Arrays	
by Jubran, et. al.	
3.3.1 Methodology	19
3.3.2 Instrumentation	19
3.3.3 Result	21
3.3.4 Conclusion	24
3.4 Experiment Studies on Natural Convection	25
Heat Transfer from Horizontal Fin Arrays by	
Sujatha and Sohban	
3.4.1 Methodology and Instrumentation	25
3.4.2 Result	27
3.4.3 Conclusion	29

3

3.5 Heat Transfer from Micro-Finned Surfaces to	30
Flow of Fluorinert Coolant in Reduced-Size	
Channels by Hitoshi, et. al.	
3.5.1 Instrumentation	30
3.5.2 Result	31
3.5.3 Conclusion	34
3.6 Least-Material Optimization of Vertical Pin-fin,	35
Plate-Fin, and Triangular-Fin Heat Sinks in	
Natural Convective Heat Transfer by Madhwudan	
and Avram	
3.6.1 Methodology	35
3.6.2 Result	36
3.6.3 Conclusion	38
3.7 Literature Review Summary	38
3.8 Literatures Review Comparison	39

METHODOLOGY

4

5

4.1 Experimental	41
4.1.1 Plate Fin and Pin Fin Experiment	41

RESULT AND DISCUSSION

5.1 Plate Fins Experiment Test	49
5.1.1 Data for Plate Fins Experiment Test	49
5.1.2 Comparison Data between Pure Aluminum,	51
Pure Copper and Carbon Steel for Plate	
Fins	
5.1.3 Data for Pure Aluminum Plate Fin	53

Experiment Test with Different Thickness	
5.1.4 Data for Pure Copper Plate Fins Experiment	55
Test with Different Spacing	
5.2 Pin Fins Experiment Test	58
5.2.1 Data for Pin Fins Experiment Test	58
5.2.2 Comparison Result between Pure	59
Aluminum, Pure Copper and Carbon Steel	
Pin Fin	
5.2.3 Data for Pure Aluminum Pin Fin	60
Experiment Test with Different Diameter	
5.2.4 Data for Pure Aluminum Pin Fins	63
Experiment Test with Different Height	
5.2.5 Data for Pure Copper Pin Fin Experiment	65
Test with Different Spacing	
5.3 Data Temperature by used Numerical Method	67
5.4 Efficiency for Fins Experiment Test	74
5.5 Heat Transfer for Fins Experiment Test	76
5.6 Nusselt Number and Rayleigh Number in Influent	79
Fins Effect	

х

87

89

CONCLUSION

6.1 Project Problems	85
6.2 Suggestion for Future Research	85

REFERENCE

6

APPENDIX

(A-C)

LIST OF TABLES

TA	DI	
	к	

TITLE

PAGE

2.1	Different parameter between plate fin and pin fin	9
	(Hagen, 1999)	
2.2	Temperature distribution and heat loss for fins of	9
	uniform cross section (Frank and David, 2001)	
3.1	η_{max} and the ratio ϕ/Q_N for various Pr (Garg and	18
	Velusamy, 1984)	
3.2	Parameter condition (Jubran, et. al, 1993)	20
3.3	Comparison of heat transfer coefficients (Sujatha	27
	and Sohban, 1996)	
3.4	Description for flat channel (Hitoshi et. al, 1997)	32
3.5	Description for micro-finned channel (Hitoshi, et. al, 1997)	33
3.6	Least-Material Optimization, $L = W = 10$ cm.	37
	Aluminium, $k = 200 W/m.k$, $\theta_b = 25k$ (Madhwudan	
	and Avram, 1998)	
3.7	Comparison methodology	39
3.8	Parameters affect on heat transfer	40
5.1	Plate fin experimental data for different materials	50
5.2	Comparison experimental result between difference	51
	materials	
5.3	Thermal conductivity for materials	51
5.4	Experimental data for pure aluminum	53
5.5	Comparison experimental data between pure	54

	aluminum plate fin with different thickness	
5.6	Experimental data for pure copper	55
5.7	Comparison experimental data between pure copper	56
	plate fins with difference spacing	
5.8	Pin fin experimental data for different materials	58
5.9	Comparison experiment of result between different	59
	material	
5.10	Experiment data for pure aluminum pin fin	61
5.11	Comparison experimental data between pure	61
	aluminum pin fin with different diameter	
5.12	Experimental data for pure aluminum pin fin	63
5.13	Comparison experimental data between pure	64
	aluminum pin fins with different height	
5.14	Experimental data for pure copper	65
5.15	Comparison experimental result between pure copper	66
	pin fin with different spacing	
5.16	Plate fins numerical data by using calculation method	69
5.17	Pin fins numerical data by using calculation method	70
5.18	Comparison between experimental and numerical data	71
	for plate fins	
5.19	Comparison between experimental and numerical data	72
	for pin fins	
5.20	Efficiency for plate fins experiment test	75
5.21	Efficiency for pin fins experiment test	75
5.22	Heat transfer for pin fins experiment test	78
5.23	Heat transfer for plate fins experiment test	78
5.24	First Correlation	81
5.25	Second Correlation	82

LIST OF FIGURES

FIC	T		
P 19		ĸ	Η.

TITLE

PAGE

2.1	Thermal energy that passes through the base by	7
	conduction convected from the fin surface (Yunus,	
	2003)	
2.2	(a) Plate fin, (b) Pin fin (Frank and David, 2001)	8
3.1	Vertical U-shaped (David and James, 1974)	12
3.2	(A) to (E) is a correlation of theoretical and	16
	experimental heat sink data by difference dimension	
	(David and James, 1974)	
3.3	Overall rate of fin heat transfer (Garg and Velusamy,	17
	1984)	
3.4	Description of shrouded pin fin array geometry and	19
	air stream flow (Jubran, et. al, 1993)	
3.5	Variation of steady-state rate of heat transfer from	21
	in-line shrouded pin fin array when $S_x = 15.9$ mm	
	(Jubran, et. al, 1993)	
3.6	Variation of steady-state rate of heat transfer from	22
	in-line shrouded pin fin array when $S_z = 31$ mm	
	(Jubran, et. al, 1993)	
3.7	Variation of steady-state rate of heat transfer from	23
	in-line shrouded pin fin array when $S_z = 15.9$ mm	
	(Jubran, et. al, 1993)	
3.8	Variation of steady-state rate of heat transfer from	23

	in-line shrouded pin fin array when $S_z = 31$ mm		
	(Jubran, et. al, 1993)		
3.9	Variations of average heat transfer coefficient for	24	
	various spanwise spacing of in-line shrouded pin-fin		
	arrays when $S_x = 15.5 \text{mm}$ (Jubran, et. al, 1993)		
3.10	Experiment specimen showing the fins separated by	25	
	mild steel spacers L= Fin Length, H= Fin Height		
	(Sujatha and Sohban, 1996)		
3.11	Showing the location of thermocouples for	26	
	measuring temperature (Sujatha and Sohban, 1996)		
3.12	Variation of the overall heat transfer coefficients with	27	
	the Rayleigh Number (Sujatha and Sohban, 1996)		
3.13	Variation of the heat dissipation with the base	28	
	temperature of aluminium, brass and mild steel fin		
	with 50mm height. (Sujatha and Sohban, 1996)		
3.14	Variation of overall heat transfer coefficient with	28	
	average fin temperature for mild steel fin with 60mm		
	height and with various spacing (Sujatha and Sohban,		
	1996)		
3.15	Variation of fin efficiency with Rayleigh number	29	
	(Sujatha and Sohban, 1996)		
3.16	Longitudinal cross section of the test section (Hitoshi,	30	
	et. al, 1997)		
3.17	Effects of channel height on flat channel heat	31	
	transfer (Hitoshi et. al, 1997)		
3.18	Effects of channel height on micro-finned channel	32	
	heat transfer (Hitoshi, et. al, 1997)		
3.19	Effects of channel height on heat transfer coefficients	33	
	on flat and finned surfaces (Hitoshi, et. al, 1997)		
3.20	Array heat transfer coefficient, W/m^2 -K, H = 4.5cm,	36	
	$L = W = 10m$, Aluminium, $k = 200W/m-k$, $\theta_b = 25K$		
	(Madhwudan and Avram, 1998)		
4.1	Specimen set-up for plate fin experiment	42	

4.2	Assembly heater with container	43
4.3	Assembly figure 4.2 with base plate	43
4.4	Construction for the pin fin experiment	44
4.5	Thermocouple type UNI-T	45
4.6	Internal Container	45
4.7	External Container	46
4.8	Heater	46
4.9	Type of base plate	47
4.10	Type of plate fin	47
4.11	Type of pin fin	48

•

LIST OF GRAPH

GRAPH

TITLE

PAGE

5.1	Plate fins correlation Nusselt number	82

•

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

SYMBOL

DEFINITION

Nomenclature

h	Heat transfer coefficient, W.m. ⁻² K ⁻¹
m	mass, kg
R _a	Rayleigh number, $g\beta\Delta TS^3/\upsilon a^2$
Q	Heat dissipation, W
Т	Temperature, ⁹ C
Pr	Prandtl number
η	Efficiency
L_p	Length of off set strip fin, mm
L,	Length between inlet boundary and leading edge of (first)
	fin, mm
L	Length of fin, mm
t	Fin thickness, mm
Р	Fin pitch, mm
x	Measure point
μ	Velocity components, m/s
OSF	Off set strip fin
n	L/L _p
W'	Half-gap between fin, mm

G'	Distance between bettern of fin and the bettern well men
G	Distance between bottom of fin and the bottom well, mm G'/W'
н	Fin Height, mm
D	Diameter of pin fin, mm
t	
S	Thickness of fin for plate and triangle arrays.
Sh	Horizontal clear spacing in plate and triangle arrays
	Center to center pin fin horizontal spacing, mm
U _f S	Average flow velocity between fins, m/s
	Half-pitch of fins
U ₀	Uniform flow velocity, m/s
N _f	Number of fin Pressure, Nm ⁻²
P	
Re ₀	Reynolds number $(U_0 \text{ s/r})$
C	Clearance gap between the fin tip and the horizonta
c	shroud, mm
S _x	Pin uniform spacing in the stream wise direction, mm
Sz	Pin uniform spacing in the span wise direction, mm
Q	Heat losses, W
A _	Area, m ²
ħ	Average 'tube-side convective heat transfer coefficient
Nu pfin	$\overline{h} dp/kg$, Particle Nusselt number for finned tube
G	Mass velocity
G _{mf}	Minimum fluidization mass velocity, kg /hr.m ²
F_L	Fin length, mm
\overline{D}_{p}	Average particle diameter, mm
Ω	Heat transfer capacity function
Р	Convection losses for parallel plate
u	Convection losses for U-shaped channels
N _u	Nusselt number hd/kfx
Ra	Rayleigh number

Greek

Coefficient of volumetric expansion, K ⁻¹
Kinematic viscosity, m^2 . s^{-1}
Temperature at any location excess over the ambient
temperature, K.

Subscripts

Aluminium
Brass
Mild steel
Average
Maximum
Fin
Fin array base

C Universiti Teknikal Malaysia Melaka

CHAPTER ONE

INTRODUCTION

The heat extended surface is commonly used to depict an important special case involving heat transfer by conduction within a slid and heat transfer by convection or radiations from the boundaries of the solid.

Although there are many different situations that involve such conduction convection effects, extended surface in term of fin surface are manufactured by extending, welding or wrapping a thin metal sheet on a surface enhance heat transfer from a surface by exposing a larger surface area to convection and radiation.

The application for finned heat transfer normally to the highly integrated electronic device and mechanical equipment such as high performance computers, compact mobile phones, radio, heat exchangers and etc.

1.1 Background of the Problem

Fin is a device that especially for the heat transfers through the surface. Heat transfer through fin surface are most important for making sure the systems or equipment are on safety condition, mean no overheat. Fin parameter condition is an important factor that affects the heat transfer characteristic.

Research about free convention heat transfer from fin arrays has been done by David and James in 1974. The authors have considered the finned surfaces and the base plate to be vertical U-shaped channels and have used a relationship for the Nusselt number for that geometry which has the proper behavior for both very long and very short fins. Therefore, fin length to fin spacing ratios (L/s) at from zero to infinity may be considered.

Research for heat transfer from finned surface has been done by Sujatha and Sobhan in 1996. This research has been carried out on fin array, spacing, height, and material thermal conductivity on a uniformly heated horizontal base. In order to obtain the overall heat transfer coefficients at steady condition.

Finally, fin parameter like fin height, diameter and material should be factors that have to carry out for investigating heat transfer characteristic from finned surface over the fin spacing or fin array in the heat sink system. Several researches about heat transfer characteristic also have been carried out by several authors that will be discussed in the literature review section.

1.2 Statement of the Problem

Finned surface are frequently used as an efficient method of rejecting waste heat from equipment like heat exchanges, computer and so on. Several researches have done by several authors about heat transfer or loss from finned surface. Factors such as fin parameter and other characteristic have affected the heat losses or transfer from finned. This research is carried out to find answers to the following issues:

- Whether the parameter affects the heat transfer from fin surface? Different material, height and other parameter are used from the experimentally.
- Which correlations are useful in design and selection of fin arrays? One is based on the base temperature of the fin and the other on the average temperature of the fin.
- 3. Whether the ambient effect will affect the heat transfer from the fin surface?
- 4. Whether the Nusselt number and Rayleigh number relationship is considered as a major parameter is finding fin efficiency?

1.3 Purpose of the Research

This research is carried out to investigate heat transfer characteristic from extended surfaces for plate fin and pin fin, with following objectives:

- 1. To build up the specimen to carry on the heat transfer experiment.
- 2. To evaluate the corresponding heat losses from finned surface.
- To evaluate the parameters for the finned surface that affects the heat transfer characteristic.

- To compare the heat transfer characteristic affect on plate fin and pin fin for the experimental.
- 5. To define the correlation that is useful in design and selection of fin array.

1.4 Importance of the Research

With rapid progress in electronic and also mechanical system, various types of highly integrated electronic device and equipment produce such as high performance computer, compact mobile phone, radio, heat exchanger and turbine have been developed. Fin heat sink was used to prevent the excessive heat on the system during operation.

So, acknowledgement about characteristic finned surface from heat transfer is very important especially to prevent the heat over the limitation level for equipment such as heat exchanger. Parameter, material arrangement and condition for fin are important factors that affect the heat transfer from finned surface.

Through the experiment, heat transfer from finned surface characteristic can be obtained. Beside that, comparison on the parameter that affect the heat transfer characteristic from plate fin and pin fin also observed through conduct the experiment.