TJ211 .A45 2007

Roboclimb (pencengkam) / Ammar Mohd Saufian.

ROBOCLIMB (PENCENGKAM)

AMMAR BIN MOHD SAUFIAN

MAY 2007

'Saya akui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kawalan, Instrumentasi dan Automasi)'

Tandatangan

Nama penyelia

: EN AHMAD ZAKI BIN HJ SHUKOR

Tarikh

: 07 MEI 2007

ROBOCLIMB (PENCENGKAM)

AMMAR BIN MOHD SAUFIAN

Laporan Ini Dikemukakan Sebagai MemenuhiSebahagian Daripada Syarat Penganugerahan Ijazah Sarjana Muda Elektrik (Kawalan, Instrumentasi Dan Automasi)

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Kebangsaan Malaysia

> > **MEI 2007**

"Saya akui laporan ini adalah hasil kerja saya kecuali ringkasan dan petikan yang tiap- tiap satunya saya jelaskan sumbernya"

Tandatangan

Nama : AMMAR BIN MOHD SAUFIAN

Tarikh : 07 MEI 2007

PENGHARGAAN

Pertamanya bersyukur ke hadrat Ilahi kerana dengan limpah kurniaNya dapatlah saya menyiapkan laporan ini.Jutaan terima kasih kepada penyelia saya En Ahmad Zaki bin Hj Shukor kerana banyak memberi tunjuk ajar dan panduan di dalam melaksanakan projek ini.

Terima kasih kepada bapa saya,En Mohd Saufian Ibrahim kerana memberi bantuan kewangan bagi membeli perkakasan untuk dalam projek ini.Sekalung perhargaan kepada ahli kumpulan saya Asrul Izwan B Mohd Salleh dan Abd Razak B Shaari kerana membantu saya untuk melaksanakan Projek Sarjana Muda 2. Kepada semua rakan- rakan yang banyak membantu jutaan terima kasih diucapkan.

ABSTRAK

Tujuan utama projek ini adalah membentuk sebuah pencengkam bagi tujuan mencengkam objek yang ditetapkan. Pencengkam juga akan digabungkan dengan dua bahagian yang lain iaitu bahagian penggerak dan rangka utama bagi membentuk Roboclimb. Selain daripada tugasan mencengkam, pencengkam membantu dalam pergerakan roboclimb ketika menaiki paip PVC dan menuruninya.

ABSTRACT

The main objective of this project is to create a gripper which is to grip an object. The gripper is attaching with the other part of the robot which is a roller and the main body to set up a roboclimb. This gripper also contributes to the roboclimb movement while moving up and down the PVC pipe.

ISI KANDUNGAN

BAB	PE	RKARA	HALAMAN
	TA	JUK PROJEK	i
	PE	NGAKUAN	ii
	PE	NGHARGAAN	iii
	AH	STRAK	iv
	AH	STRACT	v
	KA	ANDUNGAN	vi-viii
	SE	NARAI RAJAH	ix
	SE	NARAI JADUAL	xii
1	PENG	ENALAN	
	1.1	Objektif Projek	1
	1.2	Skop Projek	1
	1.3	Penyataan Masalah	3
	1.4	Pengenalan tentang roboclimb	3
	1.5	Pengenalan tentang pencengkam (grippe	er) 4
	1.6	Pengenalan tentang Robofest.	4
		1.6.1 Ciri-ciri dan rekabentuk tapak tiang	5 5
		memanjat	
	1.7	Metodologi Projek	7
		1.7.1 Perjalanan Keseluruhan Projek	7
		1.7.2 Perlaksanaan Mengikut Bahagian	n 9
		1.7.2.1 Litar Kawalan PIC	9
		1.7.2.2 Motor Servo	10
		1.7.2.3 Perlaksanaan Bahagian Pencengka	ım 11

2 KAJIAN LITERATUR

3

2.1	Kajian Bahan	12
	2.1.1 Robot Chesster Junior	12
2.1.2	Pencengkam Mekanikal	15
2.1.3	Motor Servo	20
2.1.4	PIC	23
2.1.5	Litar Pengatur Sumber Kuasa Voltan.	28
PEMB	ANGUNAN PROJEK	
3.1	Pembangunan Litar	32
	3.1.1 Penerangan Litar PIC	32
3.2	Pembangunan Model Robot	34
	3.2.1 Model Roboclimb	34
	3.2.3 Penerangan mekanisma pencengkam.	36
	3.2.4 Gambarajah Model Kertas	37
	3.2.5 Pembinaan menggunakan aluminium.	38
3.3	Pembangunan Perisian PIC.	39
	3.3.1 Cara kerja mekanisma pencengkam.	39
	3.3.2 Cara Bagi mekanisma Penyeberang	41
	dan Pencengkam	
	3.3.3.1 Boot loader	41
3.4	Eksperimen yang berkaitan bagi menguji	43
	keberkesanan Projek	
	3.4.1 Eksperimen 1 : Mengguji litar PIC	43
	3.4.2 Eksperimen 2: Menguji kemampuan	44
	motorservo.	
	3.4.3 Eksperimen 3 : Membina dan menguji	46
	aturcara robot dengan perisian	
	MikroC dan Proteus.	

4 KEPUTUSAN

	4.1	Perkakasan	51
		4.1.1 Litar Pengesan Warna.	50
		4.1.2 Litar Suis Penghad.	50
	4.2	Perkakasan	51
		4.2.1 Pengaturcaraan Bahagian Pencengkam.	51-54
		4.2.1.1 Aturcara sudut bukaan dan	
		tutup pencengkam.	51-52
		4.2.1.2 Gabungan program dengan masukan suis penghad dan litar pengesan	53 - 54
5	PERBINCANO	GAN	55
	KESIMPULA	N DAN CADANGAN	56
6	RUJUKAN		57-58
7	LAMPIRAN		59-64

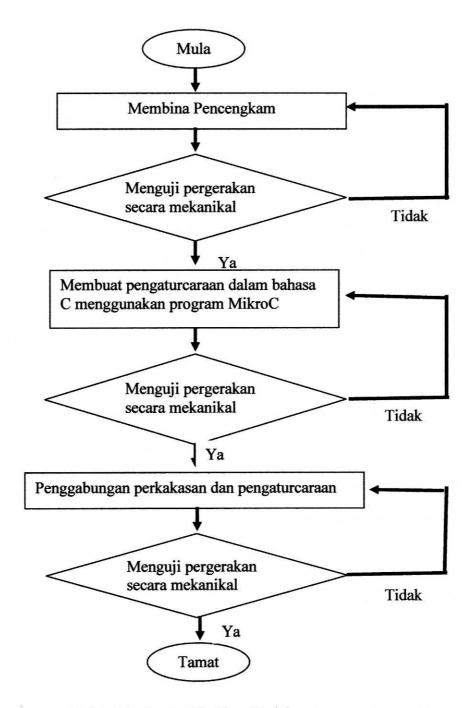
SENARAI RAJAH

NO.	TAJUK	HALAMA
Rajah 1.0	Carta Alir Skop Projek	2
Rajah 1.1	Tapak pertandingan	6
Rajah 1.2	Objek sasaran	6
Rajah 1.3	Carta Alir Metodologi Projek.	8
Rajah 1.4	Carta alir bagi perlaksanaan litar kawalan	9
Rajah 1.5	Carta alir bagi mengkaji motor servo	10
Rajah 1.6	Carta alir bagi bahagian pencengkam	11
Rajah 2.0	Gambarajah blok perkakasan	13
Rajah 2.1	Litar pengawal 8-servo	14
Rajah 2.2	Pencengkam pada Robot Chester Junior	
Rajah 2.3	Kedudukan Motor Servo pada	
v	Robot Chesster Junior	14
Rajah 2.4	Robot Chesster Junior	14
Rajah 2.5	Pencengkam CAM	15
Rajah 2.6	Pencengkam Bukaan Luas	16
Rajah 2.7	Pencengkam luar dan dalam CAM	17
Rajah 2.8	Pencengkam satu rahang	18
Rajah 2.9	Pencengkam kotak	19
Rajah 2.10	Motor Servo	20
Rajah 2.11	Keratan rentas Motor Servo	20
Rajah 2.12	Graf pulse melawan sudut	22
Rajah 2.13	PIC16F877A	24
Rajah 2.14	Pin-pin pada PIC16F877A	26
Rajah 2.15	Litar pengatur sumber kuasa voltan	28
Rajah 2.16	Contoh Regulator yang terdapat di pasaran	29
Rajah 2.17	Gabungan litar yang wujud didalam regulator	30
Rajah 3.0	Litar PIC dan "bootloader"	33

Rajah 3.1	Litar PIC yang sudah di kecilkan	33
Rajah 3.2	Lakaran Asas Roboclimb dan pergerakan	34
	melalui lukisan	
Rajah 3.3	Lukisan pencengkam bagi roboclimb	35
	dari pandangan atas.	
Rajah 3.4	Model kertas yang telah dibina.	37
Rajah 3.5	Struktur Roboclimb	38
Rajah 3.6	Struktur Pencengkam	38
Rajah 3.7	Carta alir mekanisma pencengkam	40
Rajah 3.8	Litar Bootloader (dalam bulatan)	42
Rajah 3.9	Gelombang dedenyut yang diberi kepada	44
	motor servo untuk berputar	
Rajah 3.10	Voltan masukan $9.08V \approx 9V$ yang diberi secara	45
	terus kepada litar PIC	
Rajah 3.11	Voltan masukan 9V yang diberi kepada	45
	motorservo untuk berfungsi	
Rajah 3.12	Motor servo yang digunakan	46
Rajah 4.1	Roboclimb bergerak melalui batang pvc	49
	secara menegak dan mendatar	
Rajah 4.2	Gabungan Ketiga-tiga bahagian dan	49
	pencengkam dengan keseluruhan roboclimb	
Rajah 4.3	Litar pengesan warna yang sebelum dipadatkan.	50
Raiah4 4	Litar Suis Sentuh (dalam bulatan)	51

SENARAI JADUAL

NO	TAJUK	HALAMAN	
Jadual 1.0	Jadual Spesifikasi tapak pertandingan	5	
Jadual 2.0	Ciri- ciri pada PIC16F877A	25	
Jadual 2.1	Carta Pengatur Sumber Kuasa Voltan	29	


PENGENALAN

1.1 Objektif Projek

Objektif projek ini ialah untuk menghasilkan sebuah pencengkam berdasarkan rekabentuk lakaran yang dibuat. Lakaran yang dilakukan adalah dengan memodifikasi sebuah pencengkam yang sedia ada. Litar kawalan turut di tambah pada pencengkam supaya ianya dapat berfungsi mengikut pergerakan yang diprogramkan. Setelah pencengkam tersebut berjaya dihasilkan, ianya akan digabungkan dengan bahagian-bahagian yang lain supaya membentuk sebuah robot yang dinamakan Roboclimb.

1.2 Skop Projek

Di dalam projek ini, pencengkam yang direka akan melakukan tugasan untuk melakukan operasi mengangkat dan memindahkan anak patung "spiderman" iaitu bebanan di dalam tugasan yang diberi. Selain daripada melakukan tugas mengangkat dan meletakkan beban, pencengkam berfungsi membantu pergerakan robot ketika bergerak di sepanjang paip PVC yang akan dilalui. Ianya akan mencengkam bahagian permukaan PVC untuk memastikan robot akan bergerak selari dengan paip PVC dan tidak lari dari landas pergerakan yang betul. Ianya memberi sokongan dan bertindak sebagai pemandu arah untuk robot tersebut bergerak.

Rajah 1.0: Carta Alir Skop Projek

1.3 Penyataan Masalah

Projek ini dijalankan bagi mencari alternatif kepada kerja-kerja yang dijalankan secara manual oleh manusia. Aspek keselamatan dan kecekapan akan menjadi lebih terjamin sekiranya terciptanya robot yang mampu membantu menggantikan manusia dalam melakukan kerja-kerja di tempat yang sempit serta berisiko tinggi. Untuk menghasilkan robot yang cekap memanjat dan bersaiz kecil berdasarkan deria-deria tertentu, saya bertanggungjawap untuk menghasilkan pencengkam yang cekap selain sesuai dari segi saiz dan berat.

1.4 Pengenalan tentang roboclimb

Roboclimb yang direka mempunyai 3 bahagian utama iaitu bahagian penggerak, rangka badan utama dan pencengkam. Pergerakan robot ini adalah dengan mekanisma roda pada bahagian penggerak serta disokong oleh pergerakan bahagian badan serta bantuan daripada pencengkam. Tugasan bagi roboclimb ini adalah untuk memanjat paip PVC serta melakukan kerja mengangkat dan meletakkan objek sasaran dalam tempoh masa terpantas dengan tepat dan lancar. Bagi tujuan itu, lima keluaran digunakan iaitu 2 buah motor DC serta 3 buah motor servo manakala terdapat dua bahagian sebagai masukan iaitu *limit switch* serta pengesan warna hitam-putih (black and white sensor). Bahagian masukan dan keluaran ini dikawal oleh PIC.

4

1.5 Pengenalan tentang pencengkam (gripper)

Bagi bahagian pencengkam, saya ditugasakan untuk mereka sebuah pencengkam yang bersesuaian dengan fizikal robot tersebut disamping memastikan bahagian ini berfungsi dengan baik. Pencengkam ini bertujuan untuk membantu pada setiap pergerakan robot semasa mendaki paip pvc tersebut dan melakukan kerja memegang objek sasaran serta kemudiannya meletakkan objek tersebut pada tempat yang dikehendaki. Bahagian ini dikawal oleh sebuah motor servo yang pergerakannya di kawal oleh PIC. Aspek yang perlu diambil kira dalam rekaan pencengkam ini ialah ketepatan motor tersebut berfungsi serta kestabilan bahagian ini apabila digabungkan dengan bahagian yang lain.

1.6 Pengenalan tentang Robofest

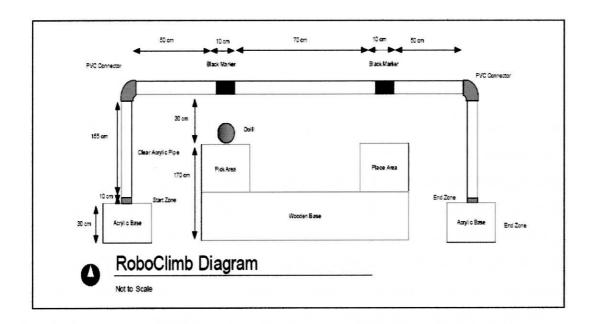
RoboClimb adalah sebuah robot yang akan bergerak dengan memanjat dan menyeberangi sebuah tiang seakan-akan tiang gol. Kemudiannya, robot ini akan berhenti pada kawasan yang bertanda hitam untuk menyelamat objek di bawah kawasan bertanda hitam tersebut dan seterusnya meletakkan objek tadi pada kawasan hitam yang kedua (zon selamat). Seterusnya robot ini akan menyeberangi tiang tersebut sehingga turun ke zon penamat. Semasa pertandingan, robot ini diberi peluang sebanyak 3 kali untuk percubaan dan masa yang perlu diambil untuk robot ini bermula dari zon mula sehingga ke zon tamat ialah selama 5 minit.

Spesifikasi robot yang dibina

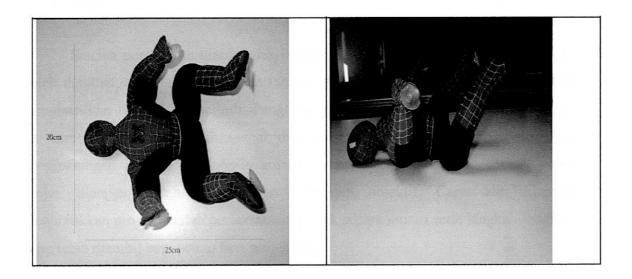
1. Berat : kurang dari 1 kilogram

2. Sumber kuasa : kurang dari 24 VDC

3. Panjang jangkauan : kurang dari 30 cm


Ciri-ciri dan rekabentuk tapak tiang memanjat 1.6.1

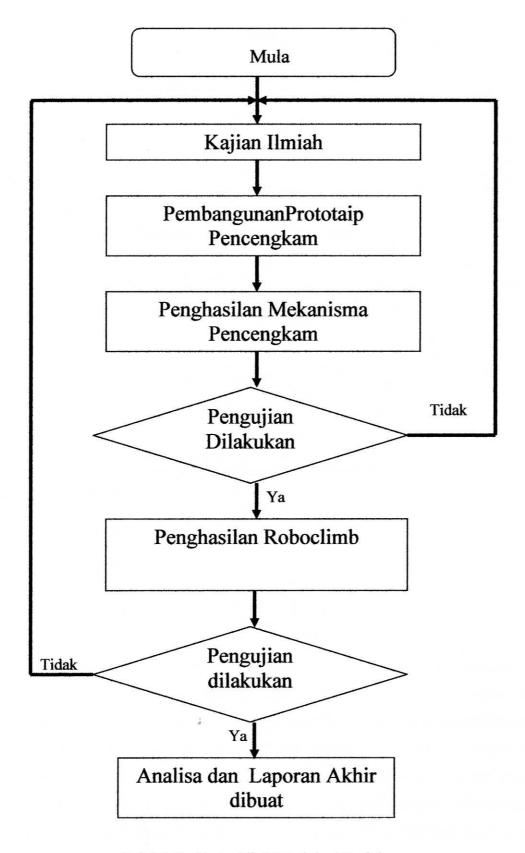
Tiang memanjat bagi Roboclimb dibina seakan tiang gol. Ianya dibina supaya membolehkan RoboClimb bergerak dalam 4 keadaan iaitu keadaan menaik, membengkok, menyeberang (dari lengkung pertama ke lengkung kedua) dan menurun. Semua ukuran pada tiang memanjat ini dibina mengikut ukuran sebenar daripada pihak penganjur seperti yang di tunjukkan di dalam Rajah 1.0 di bawah:


Jadual 1.0: Jadual Spesifikasi Tapak pertandingan.

Silinder akrilik	Diameter dalam 46mm
	2. Diameter luar 50mm
Penyambung PVC	1. Diameter dalam 50mm
	2. Diameter luar 54mm
Tapak kayu	1. Tinggi 300mm
	2. Panjang 500mm
	3. Lebar 500mm
Tapak menyelamat	Tapak menyelamat dan meletak (300mm tinggi,500mm panjang, dan 500mm lebar)
Objek (patung)	1. 250mm panjang dan 50mm lebar

Rajah 1.1 menunjukkan pelan bagi tapak memanjat Roboclimb dan Rajah 1.2 merupakan objek yang akan dibawa (diselamatkan) oleh mekanisma pencengkam menyelamat.

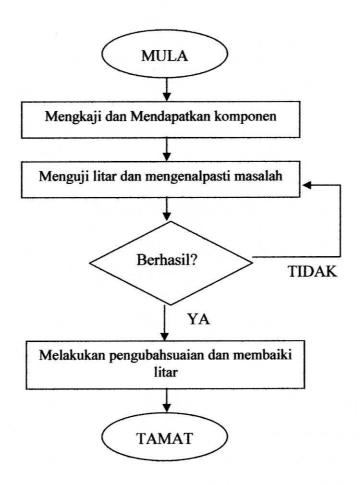
Rajah 1.1: Tapak pertandingan


Rajah 1.2 : Objek sasaran

1.7 Metodologi Projek

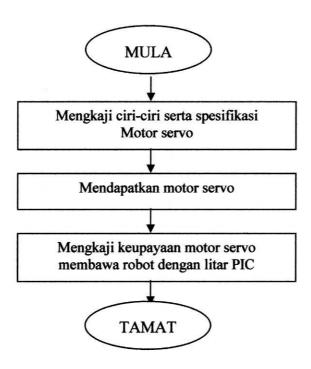
1.7.1 Perjalanan Keseluruhan Projek

Secara umumnya untuk memulakan projek ini, kajian-kajian ilmiah perlu dilakukan bagi mendapat idea tentang projek yang akan dijalankan. Setelah itu, rekabentuk struktur fizikal kepala dan leher robot dilukis dengan menggunaan perisian SolidWork dan seterusnya membina struktur fizikal robot tersebut. Setelah perkakasan siap dibina, perancangan bagi pergerakan pencengkam ditetapkan bagi diaplikasikan pada litar PIC. Untuk menggerakkan leher dan kepala robot, kedudukan motor servo perlu ditetapkan terlebih dahulu, bagi menghasilkan pergerakan yang sempurna. Setelah selesai membina aturcara pergerakan pencengkam menggunakan PIC, maka pengujian perlu dilakukan samada pergerakan yang dibina sesuai atau tidak. Untuk menguji pergerakan ini, perisian PROTEUS boleh digunakan.


Setelah pergerakan untuk bahagian pencengkam lengkap dan sesuai maka ia boleh digabungkan dengan bahagian rangka utama serta bahagian penggerak untuk menghasilkan sebuah Roboclimb. Pengujian perlu dilakukan ketika penggabungan ini kerana dikhuatiri tidak sesuai dan menepati apa yang dikehendaki. Jika penggabungan berjaya dan segala aturcara yang ditetapkan adalah sesuai, maka projek dianggap telah berjaya dan mencapai objektif. Carta alir dibawah menunjukkan proses kaedah perlaksanaan projek secara umum serta langkah-langkah yang telah diambil bagi setiap fasa projek ini.

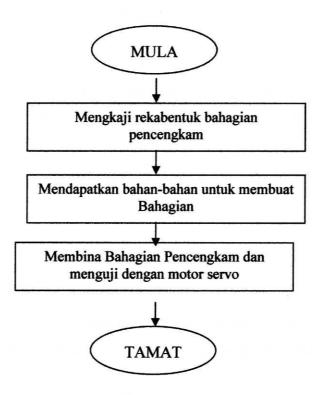
Rajah 1.3 : Carta Alir Metodologi Projek.

1.7.2 Perlaksanaan Mengikut Bahagian


1.7.2.1 Litar Kawalan PIC

Rajah 1.4 : Carta alir bagi perlaksanaan litar kawalan

Perlaksanaan Litar PIC dapat diterangkan dalam rajah 1.4. Perkara pertama yang mesti dilakukan ialah mengkaji litar serta mendapatkan komponen bagi menghasilkan litar. Ini adalah kerana, tidak semestinya litar yang didapati daripada sumber internet atau lain-lain boleh berfungsi dengan baik. Oleh itu, setelah litar dibentuk, pengujian litar perlu dilakukan dan masalaj harus dikenalpasti jika ia wujud pada litar. Setelah masalah dikenalpati, maka pengubahsuaian pada litar perlu dipebaiki. Jika masih terdapat masalah, maka pengujian perlu dilakukan dan masalah harus dikenalpasti dan diatasi sehingga berjaya.


1.7.2.1 Motor Servo

Rajah 1.5 : Carta alir bagi mengkaji motor servo.

Perlaksanaan Litar PIC dapat diterangkan dalam rajah 1.5. Pada mulanya ciriciri serta spesifikasi motor servo harus diuji terlebih dahulu untuk mndapatkan motor servo yang sesuai dan yang terbaik untuk diaplikasikan pada robot. Setelah dikenalpasti motor servo yang sesuai, maka motor servo tersebut perlu didapatkan daripada pembekal yang berkenaan kerana tidak semua pembekal menjual ciri-ciri motor servo yang dikehendaki. Setelah mndapatkan motor servo, keupayaannya harus diuji dengan melihat keberkesanannya membawa rangka robot serta litar PIC. Jika tidak berjaya, maka ciri-ciri serta spesifikasi motor servo yang sesuai harus dikaji semula.

1.7.2.2 Perlaksanaan Bahagian Pencengkam

Rajah 1.6: Carta alir bagi bahagian pencengkam

Perlaksanaan bahagian pencengkam dapat diterangkan dalam rajah 1.6. Kajian perlu dilakukan pada rekabentuk bahagian pencengkam dengan membina sebuah model bagi mendapatkan satu rekaan yang tepat dan boleh berfungsi dengan baik. Setelah kajian selesai dilakukan, maka bahan-bahan untuk membuat bahagian pencengkam seperti aluminium perlu didapatkan. Kemudian struktur bahagian dibina dan setelah siap, pengujian dilakukan dengan memasang motorservo pada struktur rangka robot. Jika tidak sesuai, bahan-bahan yang sesuai untuk membuat robot perlu didapatkan