DEVELOPMENT OF A MINI RACE BOAT POWERED BY SOLAR

MUHAMMAD FARIS BIN FADZIL

This report is submitted in order to fulfill a part of the requirements for award of Degree in Bachelor of Mechanical Engineering (Thermal-Fluid)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

JULY 2012

"I hereby declared that I have read this thesis, and in my opinion, this thesis is sufficient in terms of scope and quality for achieving award of

Degree in Bachelor of Mechanical Engineering (Thermal-Fluid)"

Signature	:
Supervisor	: En. Imran Syakir bin Mohamad
Date	:

"I hereby declared that this report and all that comes with it is my own work, except the ideas and summaries in which I have clarified their sources"

Signature	:
Author	: Muhammad Faris bin Fadzil
Date	:

Special dedication is dedicated to my family, supervisor, lecturers, friends and all others that aid me in completing this thesis.

ACKNOWLEDGEMENT

Alhamdulillah, I am most grateful to Allah Almighty for His small gift in blessing, health and kindness that has allowed me to perform and successfully complete this thesis in time.

Tons of thank and appreciation to my former supervisor, En. Mohd Afzanizam bin Mohd Rosli and my current supervisor, En. Imran Syakir bin Mohamad for his continuous support and assistance, relentless guidance and lots of advice and encouragement along the way of completing this progress report.

Also, I would like to thank my fellow classmates and students in which without them, my work won't go as smoothly as needs be. My appreciation to all of you knows no boundaries.

Last but not least, I would like to thank my family members, especially my parents, and close friends, also to the Assistant Director of National Science Centre for the organization's aid and encouragement during completing this thesis.

ABSTRACT

The project is about research of the usage of photovoltaic cells for use in a direct current circuit, which are then attached to a mini prototype boat that is to be tested and run in water, and based on yearly competition of solar-powered boat that is held in National Science Centre.

Several boat prototypes are designed using the Computer Aided Design (CAD) software that is abundance in designing technology. Such software is SolidWorks 2008, CATIA V6 and Autodesk Inventor Professional 2010, whereby the main software that is applied for drawings in this research is Autodesk Inventor software. The solar boat is then fabricated and tested for it to meet the criteria of best design through analysis done.

Tests are conducted using Computational Fluid Dynamics (CFD) software, which analyzes the overall fluid flow around the models tested. The models is then constructed using the materials and correct tools for it to achieve the proper flow properties as analyzed, which is then attached with the purposed solar circuits.

The results of flow analysis using CFD software is recorded between three purposed designs, which are RB1, RB2 and RB3. It is concluded that the best design is RB3 by referring to the drag coefficient of CFD analysis. Solar circuit designs are also concluded to be using 6.0 V solar panel pairings for maximum voltage and current generated. Combined together, this can produce the best mini race boat that moves using solar power, and is able to achieve estimated target time of 36.6 second, which is ahead of previous year's winning record time.

ABSTRAK

Projek ini adalah berdasarkan penggunaan sel berkuasa solar yang akan diaplikasikan dalam sesuatu litar arus terus, yang dimana kemudiannya akan disambungkan pada bot prototaip yang akan diuji dan dijalankan atas air berdasarkan pertandingan bot berkuasa solar yang dianjurkan di Pusat Sains Negara setiap tahun.

Beberapa bot prototaip telah direka bentuk dengan menggunakan perisian Lukisan Berbantu Komputer (CAD) yang banyak terdapat dalam teknologi lukisan. Contoh-contoh bagi perisian tersebut adalah SolidWorks 2008, CATIA V6 dan Autodesk Inventor Professional 2010, dan dilukis terutamanya dengan menggunakan perisian Autodesk Inventor dalam penyelidikan ini. Bot berkuasa solar ini kemudiannya difabrikasi dan diuji agar ia memenuhi criteria rekabentuk terbaik dari segi analisa yang akan dijalankan.

Ujian-ujian yang dijalankan adalah dengan menggunakan perisian Perkomputeran Dinamik Bendalir (CFD), dimana ia berupaya menganalisa segala peraliran bendalir disekeliling model yang diuji. Model yang dipilih ini kemudiannya dibina dengan menggunakan bahan-bahan dan peralatan yang sesuai agar ia dapat mencapai pengalian yang baik seperti yang dianalisa, dan kemudiannya disambungkan dengan litar solar yang dipilih.

Keputusan yang didapati daripada analisa pengaliran bendalir dengan menggunakan perisian CFD direkodkan antara tiga rekabentuk, iaitu RB1, RB2 dan RB3. Konklusi dibuat berdasarkan pekali seretan didalam analisa CFD, dimana rekabentuk RB3 telah dipilih. Rekabentuk litar solar disimpulkan agar dipilih panel berkembar berkuasa 6.0 V untuk menghasilkan voltan dan arus maksima. Digabungkan kedua-duanya, ini mampu menghasilkan bot lumba mini berkuasa solar yang bagus dan mencapai masa 36.6 saat, lebih laju dari masa yang direkodkan oleh pemenang tahun-tahun sebelumnya.

CONTENT

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	ABSTRAK	iii
	TABLE OF CONTENT	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	ix
	LIST OF SYMBOLS	xii
	LIST OF APPENDICES	xiii
CHAPTER 1	INTRODUCTION	
	1.1 Background	1
	1.2 Objective	3
	1.3 Scope	4

1.4 **Problem Statement** 5

PAGE

CHAPTER 2 LITERATURE REVIEW

2.1	Mater	ials of Photovoltaic Panel	6
2.2	Catego	Categorization of Solar Panels	
	2.2.1	Mono-crystalline Solar panel	10
	2.2.2	Poly-crystalline Solar panel	12
	2.2.3	Amorphous Solar Panel	13
	2.2.4	Thin-film Solar Panel	14
	2.2.5	Latest Panel Technology	15

CHAPTER 3 METHODOLOGY

3.1	Flow Chart	19
3.2	Gantt Chart	21
3.3	Mini Boat Design	23
3.4	Solar Electronic Circuit	32

CHAPTER 4 RESULTS

4.1	Results for the Mini Race Boat	35
4.2	Results for Electronic Solar Circuit	38
4.3	Results for Mini Solar Race Boat	47

CHAPTER	TITI	LE	PAGE
CHAPTER 5	DISC	CUSSION	49
CHAPTER 6	CON	ICLUSION AND RECOMMENDATION	
	6.1	Conclusion	54
	6.2	Recommendation	55
	REF	ERENCES	56
	APP	ENDICES	59

xiii

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Thermal conductivity of materials usually considered for construction of PV panels (Source: Solar Collector and Panels, Reccab M. Ochieng, 2010)	9
2.2	Production Capacities of Various PV Technologies in 2002 (Source: Renewable Energy World, Montgomery J., 2003)	16
3.1	Gantt Chart for PSM 1	21
3.2	Gantt Chart for PSM 2	22
3.3	Proposal of Required Components in Assembling a Solar Circuit	32
4.1	Table of Drag Coefficient for Boat Designs	37
4.2	Voltage and Current analysis of set of 6.0 V Solar Panel	39
4.3	Theoretical Values of Voltage and Current	41
4.4	Readings of a 7.5 V Solar Panel	43
4.5	Readings of a pairing of 6.0 V Solar Panels	44
4.6	Readings of a 5.0 V Solar Panel	45

4.7	Competition Winners for 2011 Mini Solar Race Boat	47
	(Source: MyRobotz Enterprise, 2011)	
4.8	Obtained Results for Design Model RB2 and Design Model RB3	48
5.1	Table of Items Price List for Solar Electronic Circuit	53

xiii

LIST OF FIGURES

NO.

TITLE

1.1	The photovoltaic effect experiment	
	(Source: Solar Power in Building Design,	2
	Gevorkian P., 2009)	
1.2	The electronic work flow of the circuit	2
2.1	Periodic Table of Elements (Source:	
	The Physics of Solar Cells, Nelson J., 2003)	6
2.2	Concept of the electron flow in an N-P-N transistor	
	(Source: Solar Power in Building Design,	8
	Gevorkian P., 2009)	
2.3	Comparisons between mono-crystalline and	
	poly-crystalline panel (Source: National Science	17
	Center, Kuala Lumpur)	
2.4	Comparisons between poly-crystalline and	
	amorphous panel (Source: National Science	18
	Center, Kuala Lumpur)	
3.1	The Flow Work of the Project	20

PAGE

3.2	Ark-Concept of Mini Race Boat	23
3.3	Hovercraft-Concept of Mini Race Boat	23
3.4	Barge-Concept of Mini Race Boat	24
3.5	Detail Drawing of Mini Boat Design RB1	25
3.6	Detail Drawing of Mini Boat Design RB2	26
3.7	Detail Drawing of Mini Boat Design RB3	27
3.8	Fabrication of Design RB1 (just after taken out of Fabrication Machine)	29
3.9	Fabrication of Design RB2 (after residues of plastic is removed)	29
3.10	Fabrication of Design RB3 (after residues of plastic is removed)	30
3.11	Florist's sponge	30
3.12	Polystyrene	31
3.13	Fan blade; and other miscellaneous items	31
3.14	Two different types of wires used	33
3.15	A Two-Way Switch	34
3.16	A Soldering Iron	34
4.1	Sample Velocity Streamline of CFD Analysis	35
4.2	Sample Pressure Contour of CFD Analysis	36
4.3	Drag Coefficient of Benchmark Prototype Analysis	36
4.4	Electronic circuit of solar panel	38

4.5	4 pieces of 6.0 V solar panels, or 2 pairs (7.4 cm X 4.5 cm) each	39
4.6	A 7.5 V solar panel (15 cm X 8.5 cm)	41
4.7	A 5.0 V solar panel (11cm X 5.5 cm)	41
4.8	A multi-meter used to record readings of voltage and current currently passing through a circuit	42
4.9	The mini solar boat before the electronic circuit is attached atop of it	47
5.1	Graph of Voltage Generated, V according to Time of Data Measured	49
5.2	Graph of Current Generated, I according to Time of Data Measured	50
5.3	A Sample of 3.0 V motor	51
5.4	A Sample of 5.9 V motor	51
5.5	A Sample of 9.0 V motor	51
5.6	A Sample of 12.0 V motor	52

xiii

LIST OF SYMBOLS

- I = Current, Ampere (A)
- V = Voltage, Volt (V)
- R = Resistance, Ohm (Ω)
- P = Power, Watt (W)

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Solar Boat Race Competition 2011	59
В	Amphibious Solar Vehicle Open Category 2012	63

CHAPTER 1

INTRODUCTION

1.1 Background

Solar, or photovoltaic (PV), cells are electronic devices that essentially convert the solar energy of sunlight into electric energy or electricity. The physics of solar cells is based on the same semiconductor principles as diodes and transistors, from which it form the building blocks of the entire world of electronics.

Solar cells convert energy as long as there is sunlight. In the evenings and during cloudy conditions, the conversion process diminishes. It stops completely at dusk and resumes at dawn. Solar cells do not store electricity, but batteries can be used to store the energy.

One of the most fascinating aspects of solar cells is their ability to convert the most abundant and free form of energy into electricity, without moving parts or components and without producing any adverse forms of pollution that affect the ecology, as is associated with most known forms of nonrenewable energy production methods, such as fossil fuel, hydroelectric, or nuclear energy plants.

1

Figure 1.1: The photovoltaic effect experiment (Source: Solar Power in Building Design, Gevorkian P., 2009)

The solar energy obtained from the photovoltaic panels is used to power up, per circuit flow, the mechanical components in the boat's circuit. The flow of the generated electricity in the circuit itself will move and work according to the flow:-

Figure 1.2: The electronic work flow of the circuit

C Universiti Teknikal Malaysia Melaka

The main body of the mini boat itself must be able to move through the water. The criteria that are needed to accomplish this are by adjusting the necessary specifications involving:-

- Low drag coefficient
- Aerodynamic properties of boat's body
- Stable, lightweight and durable

1.2 Objective

The objective of this project is to achieve these main points:-

- To design and obtain the best electronic circuit that goes well with the solar panels
- To design and fabricate the best design of a mini race boat.
- Able to integrate the use of solar energy (photovoltaic technology) with the mini boat.

1.3 Scope

The main target for this project to accomplish is to consider the following criterions:-

- To design a low cost, high efficiency mini boat that is suitable and applicable for installing a solar circuit
- Testing of various prototypes (boats and solar panels) through experimental procedures (measurement and simulations)

Thus, it is essential that in order to complete this project, the solar panel, its components, and the mini boat is necessary. Designing of mini solar race boat is done without using any battery or other source of power, except from solar itself, either direct power from sunlight or through an AC/DC convertor.

By using the concept of a low-power solar cell, sufficient electricity must be able to be generated by the photovoltaic panels to move the mini boat through its components. The boat itself must be stable to move at high speed in the water.

1.4 Problem Statement

The solar cell energy which directly produced by the sun can be converted to electric energy by using solar cell. The power generated from these cells will be fully used to move a mini race boat, through the use of mechanical engineering technique. The performance will then and is evaluated in terms of speed. Also, bigger understanding is needed to develop a better product

Thus, the main problem statement for the project is:-

- The best design of the mini race boat that is able to move smoothly and fast on top of water is researched. Analysis and tests are done, to determine the best design
- The best and suitable solar electronic circuit to move motors and propellers, and in turn move the race boat is done. Options are aplenty, but searching for the best takes tests and calculations.
- The best and most suitable design of mini race boat that is able to be integrated with solar panels are much more difficult than simply designing a race boat or solar electronic circuit. Thus, compatible settings must be researched so it does not hinder the boat movements on water.

CHAPTER 2

LITERATURE REVIEW

2.1 Materials of Photovoltaic Panel

*Lanthanide

**Actinide

Most solar cells are constructed from semiconductor material, such as silicon (the fourteenth element in the Mendeleyev table of elements). Silicon is a semiconductor that has the combined properties of a conductor and an insulator.

<u> </u>			-		-		120		-		60.00	17	0.00	20	650	20		
hydrogen 1																		helium 2
Lΰ																		Ц́а
п																		пе
1.0079 lithium	bervllium	i i										í	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
l l i	Re												R	C	N	0	E	Ne
6.9/1	9.0122												10.811	12.011	14.007	15,999	18.008	20.180
sodium	magnesium												aluminium	sílicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	1	16	17	18
Na	Ma													Si	P	S	CI	Ar
22.990	24,305												26.922	28.086	3.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese 25	iron	cobalt 27	nickel 20	copper 20	zinc	gallium 24	germanium	arsenic	selenium	bromine	krypton 26
19	20		21		23	24	25	20	21	20	29	- 30	31	32	33	34	35	30
K	Ca		SC		V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	40	41	Molyboenum	43	100 rutnenium	45	46	47	230mium	49	50	antimony 51	52	53	54
Dh	C.		V	7-	Mb	Ma	Te	Du	Dh	Dd	٨	Cd	lun.	Cm	Ch	To	ï	V.
RD	31		T	21	Q	IVIO	IC	ĸu	KU	Pu	Ag	Ca	In	311	30	re		ve
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ce	Ra	¥	1 m	Hf	Ta	W/	Ro	Oc	lr.	Dt	Διι	Ha	TL	Ph	Ri	Po	Δt	Rn
400.01	107.00	~	LU 474.07	170.40	100.05	102.04	100.04	03	400.00	105.00	A06.07	ing	204.20	107.0	200.00	1000		10001
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.36	ununquadium	206.96	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	l r	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	12261		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

	lanthanum 57	cerium 58	praseodymium 59	neodymlum 60	promethium 61	samarlum 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Figure 2.1: Periodic Table of Elements (Source: The Physics of Solar Cells, Nelson J., 2003)

6

Metals (located generally from left and middle side of the Periodic Table of Elements) such as gold, copper, and iron are conductors; in which their properties have loosely bound electrons in the outer shell or orbit of their atomic configuration. These electrons can be detached from respective atomic configuration when subjected to an electric voltage or current. On the contrary, atoms of insulators (mostly from right side of Periodic Table), such as glass, carbon and other gasses, have a strong bond of electrons in the atomic configuration and does not allow the flow of electrons even under the high application of voltage or current. On the other hand, semiconductor materials such as silicon, that is the focus of this topic, bind electrons midway between that of metals and insulators. (Source: Solar Engineering of Thermal Processes, Duffie J.A., 2006)

In electronics, the semiconductor materials are constructed by combining the two adjacently doped wafer elements, which is constructed from silicon. Doping implies impregnation of silicon by positive and negative agents, such as phosphorus, P and boron, B. Phosphorus (15th element) creates a free electron that produces N-type material, while boron (5th element) have a shortage of an electron, which produces the P-type material. Impregnation or combination is accomplished by depositing the previously referenced doping material on the surface of silicon using a certain heating or chemical process. The N-type material has a propensity to lose electrons and gain holes, thus it acquires a positive charge while the P-type material has a propensity to lose holes and gain electrons, so it acquires a negative charge.

When N-type and P-type doped silicon wafers are fused together, they form a P-N junction. The negative charge on P-type material prevents electrons from crossing the junction, and the positive charge on the N-type material prevents holes from crossing the junction. A space created by the P and N, or PN, wafers creates a potential barrier across the junction. (Source: Solar Power in Building Design, Gevorkian P., 2009)