"Saya mengakui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik (Kawalan , Instrumentasi dan Automasi)."

- fr Tandatangan Nama Penyelia : EN.SYED NAJIB BIN SYED SALIM 5/20) Tarikh

C Universiti Teknikal Malaysia Melaka

ROBOT HUMANOID CS8 (TANGAN BAHAGIAN 2)

MUHAMAD HAFISZAN BIN KAMARUL ZAMAN

Laporan Ini Dikemukakan Sebagai Memenuhi Sebahagian Daripada Syarat Penganuregahan Ijazah Sarjana Muda Elektrik (Kawalan, Instrumentasi dan Automasi)

Fakulti Kejuruteraan Elektrik

Universiti Teknikal Malaysia Melaka

MEI 2007

C Universiti Teknikal Malaysia Melaka

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."

Tandatangan	:
Nama	: MUHAMAD HAFISZAN B. KAMARUL ZAMAN
Tarikh	7/5/2007

ABSTRAK

Robot telah lama digunakan sejak beberapa tahun yang lalu. Ia banyak digunakan di dalam industri terutama sekali dalam pembinaan kereta. Penggunaan robot boleh mengurangkan kos, masa dan ruang kerja. Salah satu binaan robot yang mencabar pada masa kini ialah robot manusia.Untuk membuat program pergerakan robot adalah lebih sukar daripada pembinaan perkakasan robot. Bahagian tangan adalah bahagian yang dikaji dalam projek ini. Matlamat utama projek ini adalah untuk menggabungkan bahagian tangan robot yang telah dibentuk dengan bahagian robot yang lain iaitu bahagian badan dan bahu. Terbahagi kepada tiga bahagian iaitu pergelangan tangan (gripper), siku dan bahu. Setiap bahagian dipasang dengan motor servo yang menggerakkan bahagian tangan dan mengikut sudut yang telah ditetapkan di dalam program (rujuk pada bab III). Aluminium adalah barang yang digunakan dalam membuat perkakasan robot ini (rujuk pada bab III). Dalam projek ini juga ada dibuat pengujian terhadap robot (rujuk pada bab IV). Kestabilan sangat berguna ketika robot sedang berjalan, menari, membongkok, dan berdiri sebelah kaki. '*Microcontroller*' digunakan untuk menyediakan dan menyimpan arahan bagi pergerakan robot.

i

ABSTRACT

Robots have been used in many years ago. Robots are mostly used in industry field especially in cars production. Cost, time, and workspace can be reduced by using robot. Now this, the challenging erection robot is humanoid robot. It's like human beings parts like head, body, arm, and leg. The challenging in erection robot is connection between software and hardware make some difficult to determine the task. To programming the robot movement is more difficult than the hardware construction. The moving hands (manipulator) are a part of robot. Robot manipulator is part study in this project. The main purpose of this project is to combine the hands (manipulator) to body and shoulder part. To make sure this flexible shoulder move smoothly, servo motor is used to drive this part. It's separated into three parts which are gripper, elbow and shoulder. Every part is built with servo motor which is moved the hand (manipulator) parts followed the angle is set in program (refer to chapter III). Aluminum in used in this project (refer chapter III). Result and testing have in this project (refer chapter IV). The programming is used the PIC software. Every hand (manipulator) movement must be synchronous with the other parts. Balancing is very important in robot. It's very used to make the robot walking, dancing, hunching, and standing with side feet. Microcontroller is used to prepare and saved the program of movement robot.

ISI KANDUNGAN

BAB PERKARA

HALAMAN

ABSTRAK	i
ABSTRACT	ii
ISI KANDUNGAN	iii
SENARAI JADUAL	vii
SENARAI GAMBARAJAH	viii
SENARAI LAMPIRAN	xii

I PENGENALAN

1.0	PENGENALAN	1
1.1	LATAR BELAKANG PROJEK	2
1.2	OBJEKTIF PROJEK	2
1.3	SKOP PROJEK	4
1.4	PENYATAAN MASALAH	6
1.5	SUSUNAN LAPORAN PROJEK	6

II KAJIAN LITERATUR

2.0	KAJIAN LITERATUR	KAJIAN LITERATUR 8	
2.1	KAJI SELIDIK HUMANO	ID ROBOT	9
	2.1.1 Biped Humanoid Rol	bot	9
	2.1.2 sistem kawalan		11
	2.1.3 Robot ASIMO		13
	2.1.4 Charrobot		14

	2.1.5 Spesifikasi Charrobot	15
	2.1.6 Bekalan Kuasa	16
	2.1.7 Papan Litar Proses	17
	2.1.8 Kawalan	18
2.2	TEORI	19
	2.2.1 Sistem Tangan	19
	2.2.2 Mekanisme rekabentuk Manipulator	20
	(tangan robot)	20
2.3	KAJISELIDIK KOMPONEN	22
	2.3.1 PIC 16F877	22
	2.3.2 Motor Servo	27
	2.3.3 Manual Kawalan Motor Servo	35
	2.3.4 Motor Servo Pelbagai	36

III METODOLOGI

3.0	METODOLOGI PROJEK	37
3.1	PEMBINAAN PROJEK	38
2.0	BAHAN DAN PERISIAN (SOFTWARE)	10
3.2	YANG DIGUNAKAN	40
	3.2.1 Perisian Solidworks	40
	3.2.2 Perisian MICRO C (PIC)	41
	3.2.3 Perisian Proteus	41
	3.2.4 Pemilihan bahan binaan	42
	3.2.5 Aluminium	42
	3.2.6 PCB (Printed Circuit Board)	42
	3.2.6.1 Kelebihan PCB Board	43
	3.2.6.2 Jenis-jenis PCB Board	43
3.3	CARTA ALIR KESELURUHAN PROJEK	44
3.4	LAKARAN AWAL PROJEK	45
3.5	KEDUDUKAN MOTOR SERVO	46

3.6	PERGERAKKAN TANGAN 1: Ke Hadapan	47
5.0	dan Ke Belakang	
	3.6.1 Carta Alir Pergerakkan Tangan Robot	17
	(hadapan dan belakang)	47
	3.6.2 PERGERAKKAN TANGAN 2: Ke	10
	Atas dan Ke Bawah	48
	3.6.3 Carta Alir Pergerakkan Tangan Robot	10
	(atas dan bawah)	48
3.7	PENGGUNAAN PIC	49
3.8	PROSES KAWALAN MOTOR SERVO	49
3.9	PENGATURCARAAN PROGRAM DAN	
3.9	POSISI	50
	3.9.1 Carta Alir Kawalan PIC Bahagian	52
3.10	MEMBINA PROJEK PIC DENGAN	
5.10	MENGGUNAKAN MIKRO C	53
3.11	TARGET BOARD (LITAR PIC)	56
3.12	UV PCB DOUBLE LAYER	57
3.13	PEMBINAAN LITAR PCB PIC	58
3.14	BEKALAN KUASA	61
3.15	LITAR PENGATUR VOLTAN	61
3.16	MAX232/RS232	62

IV KEPUTUSAN DAN PERBINCANGAN

4.0	KEPUTUSAN DAN PERBINCANGAN	64
4.1	HASIL PERLAKSANAAN PROJEK	66
4.2	ANALISIS PROJEK	71
4.3	UJIAN SIMULASI LITAR PIC	74
4.4	PEMASALAHAN PROJEK	76
4.5	KOS YANG TELAH DIGUNAKAN	77

v

	4.6	PERBINCANGAN	77
v	KESH	MPULAN	78
	5.1	KESIMPULAN	78
	5.2	CADANGAN	78
	RUJU	AN	80
LA	LAMI	PIRAN	81

SENARAI JADUAL

NO.	TAJUK	HALAMAN
2.0	Spesifikasi tentang robot (Biped Humanoid Robot)	10
2.1	Spesifikasi tentang robot (Charrobot)	16
2.2	Panduan rujukan ciri-ciri PIC 16F877	24
2.21	Pembuktian formula motor servo	33
3.0	Nilai sudut setiap pergerakkan motor servo	57
4.0	Senarai harga barang yang telah digunakan	78

vii

SENARAI GAMBARAJAH

TAJUK

HALAMAN

1.0	Robot Asimo	3	
1.1	Carta kedudukan skop kerja	4	
2.0	Struktur dalaman robot	9	
2.1	Rupa bentuk Biped Humanoid Robot	11	
2.2	Gambarajah sistem kawalan	12	
2.3	Gambarajah Robot ASIMO	13	
2.4	Charrobot	14	
2.5	Spesifikasi ketinggian Charrobot	15	
2.6	FUTABA S3003	16	
2.7	Hitec HS-5645 MG	16	
2.8	Bateri cas semula	17	
2.9	Papan litar proses Charrobot	17	
2.10	Sistem kawalan bagi Charrobot	18	
2.11	Gambarajah pergerakkan tangan robot	19	
2.12	Rupa bentuk PIC yang digunakan	23	
2.13	Alamat-alamat didalam PIC	25	
2.14	Blok diagram setiap port	26	
2.15	Carta alir turutan kawalan PIC	27	
2.16	Kabel yang ada pada motor servo	28	
2.17	Motor servo	29	
2.18	Arah pergerakkan motor servo	30	
2.19	Hubungan antara lebar denyut dengan pusingan arah motor servo	30	
2.20	Graf sudut melawan masa bagi servomotor	31	

viii

2.22	Gambarajah masa pada 20ms di setiap 2.0ms dan	33	
	kedudukan bilah motor ke kiri		
2.23	Gambarajah masa pada 20ms di setiap 1.0ms dan	34	
	kedudukan bilah motor ke kanan	24	
	Gambarajah masa pada 20ms disetiap 1.5ms dan		
2.24	kedudukan bilah motor berada di kedudukan asal	34	
	(tengah)		
2.25	Litar PIC yang menunjukkan penggunaan suis SPDT	35	
2.26	Litar PIC yang mengawal dua motor servo pada masa yang sama	36	
3.0	Gambaran awal projek	45	
3.1	Kedudukan motor servo	46	
3.2	Proses kawalan PIC	49	
3.3	Kawalan PIC keatas Motor Servo	50	
3.4	Gambarajah litar PIC	53	
3.5	Litar LED menyala	54	
3.6	Library untuk komponen	54	
	Carta alir pergerakkan tangan robot (hadapan dan		
3.6.1	belakang)	47	
3.63	Carta alir pergerakkan tangan robot (atas dan bawah)	48	
3.7	Perisian memuat turun aturcara ke dalam peranti PIC	55	
3.8	PIC burner	55	
3.9	Target board (litar PIC) yang digunakan	57	
3.9.1	Carta alir kawalan PIC bahagian	52	
3.10	Pembinaan litar PIC daripada perisian Proteus	59	
2.11	Gambarajah penuh Litar PIC pada PCB board (Double		
3.11	Layer)	60	
3.12	Lapisan Atas	60	
3.13	Lapisan Bawah	60	
3.14	Litar PIC yang telah siap	60	
3.15	Bekalan kuasa yang digunakan	61	

3.16	Pengatur voltan	62
3.17	Litar bagi pengatur voltan IC 78L05	62
3.18	MAX232/RS232	63
3.19	Kabel bootloader	63
3.20	Litar bagi RS232	63
4.0	Pandangan hadapan dan sisi	66
4.1	Pandangan isometric	66
4.2	Bahagian gripper (jari) dan bahagian siku	68
4.3	Bahagian Tangan kiri	69
4.4	Bahagian Tangan kanan	69
4.5	Gabungan keseluruhan bahagian robot yang telah siap dibina	69
4.6	Pandangan belakang robot	70
4.7	Pandangan isometri robot dan Pandangan sisi robot	70
4.8	Pandangan atas litar PCB danPandangan bawah litar PCB	71
4.9	Litar proto board (target board) yang digunakan	71
4.10	Gabungan litar PIC dan litar regulator motor servo	71
4.11	Gelombang masa yang keluar pada osiloskop simulasi (1.5ms).	73
4.12	Pergerakan simulasi motor servo daripada -20°, 0°, dan +20°.	73
4.13	Kaki 1 PIC	73
4.14	Kaki 11 PIC	74
4.15	Kaki 32 PIC	74
4.16	Keluaran voltan litar regulator motor servo	75
4.17	Litar PIC simulasi yang digunakan untuk melihat keluaran gelombang yang dihasilkan oleh pulse	76
4.18	Litar PIC simulasi yang digunakan untuk melihat putaranmotor servomengikut sudut yang ditetapkan	76
4.19	Keluaran gelombang yang terhasil pada port C F0	77

х

SENARAI LAMPIRAN

NO.	TAJUK	HALAMAN
А	Program tangan kanan	82
В	Program tangan kiri	85
	Perancangan projek (gantt chart)	87

xi

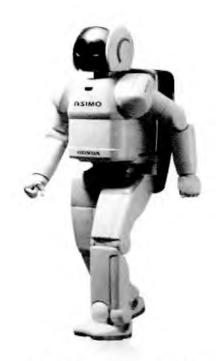
BAB I

PENGENALAN

Bab 1 menerangkan tentang perkara-perkara asas robot. Apa yang boleh digambarkan dalam projek ini, akan diterangkan secara teliti. Punca-punca masalah yang dihadapi semasa pembinaan robot ini dapat diketahui.

1.0 PENGENALAN

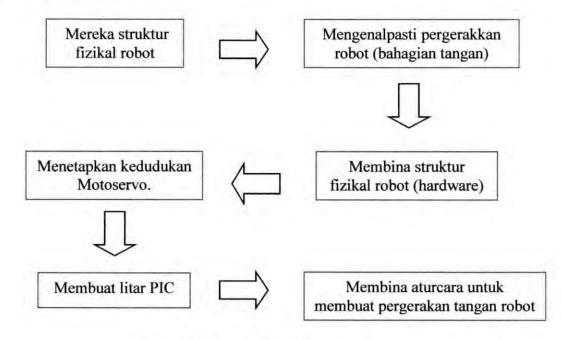
Robot humanoid adalah salah satu automasi yang boleh digunakan sebagai alat bantuan manusia yang boleh bergerak seperti manusia. Pada masa kini pembinaan robot manusia belum lagi digunakan untuk membantu manusia secara keseluruhannya. Ianya dibina sekadar dijadikan kajian untuk digunakan pada masa hadapan. Tujuan pembinaan robot ini juga adalah kerana keinginan mencipta robot yang berlainan dari robot lain seperti terdapat di Fakulti Elektrik dari segi saiz dan fungsinya. Ia lebih tertumpu pada skop yang kecil iaitu di UTeM. Buat masa ini hanya projek ini yang membina *humanoid robot* dan ia bersaiz besar. Oleh itu, peluang dan risiko ini harus diambil untuk dicuba.


1.1 LATAR BELAKANG PROJEK

Robot manusia yang dibina ini diberi nama CS8 Humanoid Robot. CS8 adalah daripada singkatan nama Control Structure dan 8 adalah bahagian-bahagian yang akan dikawal pada bahagian robot yang terdapat lapan bahagian utama iaitu kepala, bahu, badan, tangan kanan, kiri, kaki kanan, kiri, dan pinggang. Ia mencukupi bahagian-bahagian yang terdapat pada seseorang manusia. Projek ini difokuskan pada bahagian tangan yang tertumpu pada bahagian siku dan pergelangan tangan (termasuk gripper). Tangan robot yang dibina terbahagi kepada tiga bahagian iaitu bahu, siku dan pergelangan tangan. Setiap bahagian tangan digerakkan dengan menggunakan motor servo yang disambungkan kepada PIC sebagai kawalan. Dari segi pergerakannya pula, ia hanya berfungsi untuk bergerak ke hadapan dan ke belakang mengikut nilai sudut yang telah ditetapkan. Berat setiap tangan robot (tangan kiri dan kanan) yang dibina dalam lingkungan 3kg. Mempunyai ketinggian satu meter dan kelebaran 0.5 meter. Kemampuan robot mempunyai pengepit (*gripper*) yang boleh memegang objek kecil.

1.2 OBJEKTIF PROJEK

Objektif projek adalah untuk membina robot yang mempunyai fizikal seperti manusia dan lebih menjurus kepada pembinaan tangan robot sahaja. Setiap bahagian dibina mengikut struktur seakan-akan manusia. Selepas membina perkakasan, memahami penggunaan *servomotor* sebagai penggerak adalah objektif yang seterusnya, kerana penggerak binaan ini menggunakan *servomotor* sepenuhnya pada setiap bahagian badan sebagai penggerak dan memahami program Proteus untuk melengkapkan litar PIC. Kawalan robot tertumpu kepada pergerakan ke hadapan dan ke belakang (bahagian tangan). Antara contoh robot yang telah ada pada masa kini ialah Robot Asimo yang ditunjukkan di dalam rajah 1.0.



RAJAH 1.0: Robot ASIMO

Selain daripada itu projek ini juga telah memfokus pembinaan robot berdasarkan seperti berikut:

- I. Membina struktur tangan robot yang berbentuk seperti manusia.
- II. Menghasilkan pergerakkan robot yang bercirikan manusia.
- III. Memahami dan mengaplikasikan penggunaan PIC.
- IV. Memahami serta mengkaji konsep motor servo dan mengawalnya.

RAJAH 1.1: Carta kedudukan skop kerja

Membina CS8 Humanoid Robot yang bertindak seperti manusia dan mengawal pergerakan tangan yang berfokuskan kepada bahagian siku hingga ke pergelangan tangan (termasuk gripper) sahaja. Pada Projek Sarjana Muda ini, ianya lebih menumpukan pada pembangunan struktur fizikal (hardware). Ini kerana adalah lebih memudahkan kerja dan sekiranya struktur fizikal robot sudah siap pasti mudah untuk mengenalpasti segala masalah yang mungkin timbul. Selain itu juga ianya dapat menentukan kedudukan motorservo pada bahagian yang hendak disiapkan iaitu bahagian tangan robot. Dalam projek ini juga akan melibatkan kerja-kerja seperti membuat penyambunggan litar PIC serta membina aturcara (sofware) untuk pergerakkan bahagian tangan. Akhir sekali, projek ini akan menggabungkan bahagian tangan dengan bahagian yang lain untuk membentuk satu robot manusia yang lengkap.

Ciri-ciri yang perlu di utamakan dalam menghasilkan projek ini adalah seperti berikut:

A. Menghasilkan rekabentuk robot sebenar yang menyerupai manusia.

Merekabentuk satu perkakasan yang meliputi bahagian mekanikal serta bahagian elektrik. Pembinaan perkakasan projek memberi gambaran yang lebih jelas mengenai bentuk fizikal projek. Proses membuat perisian (software) akan menjadi lebih mudah dengan adanya perkakasan .

B. Menggunakan PIC sebagai pengawal sistem.

Peripheral Interface Controller (PIC) merupakan satu mikropengawal yang berguna kerana aturcara yang digunakan adalah mudah difahami. PIC berfungsi untuk mengawal keseluruhan operasi sistem. PIC jenis 16F877 digunakan dalam projek ini.

C. Merekabentuk sistem pergerakkan tangan robot.

Menghasilkan satu sistem yang boleh membantu pergerakkan tangan robot yang hampir menterupai pergerakkan tangan manusia. Menulis satu aturcara PIC yang baik dan bersesuaian dengan kendalian yang dikehendaki.

D. Memastikan projek mempunyai sistem perlindungan.

Satu sistem perlindungan perlu dilengkapkan pada sistem agar boleh memastikan perkakasan tidak rosak sekiranya berlakunya perkara yang tidak dijangkakan.

1.4 PENYATAAN MASALAH

Pada masa ini, kebanyakkan robot yang terdapat di UTEM adalah jenis yang telah siap dipasang dan para pelajar hanya tahu bagaimana cara menggunakannya sahaja. Namun begitu tidak pula para pelajar mengetahui bagaimana sesuatu robot itu dihasilkan dari mula. Oleh itu, sebagai pelajar kawalan, instrumentasi dan automasi perlu mengambil langkah untuk mengetahui bagaimana robot dihasilkan dan melakukan kajian terhadap struktur binaan asas dan dalaman robot serta pergerakannya

1.5 SUSUNAN LAPORAN PROJEK

Laporan ini menerangkan tentang pengenalan memulakan projek berdasarkan gambaran, skop dan objektif serta pernyataan masalah didalam babl. Seterusnya laporan ini menunjukkan kajian tentang literatur di dalam Bab II. Topik-topik seperti kajian literatur, teori di sentuh pada bab ini untuk menunjukkan robot apakah yang digunakan semasa kajian sebagai rujukan. Teori yang digunakan pula berkaitan dengan bahagian tangan robot dan komponen-komponen yang ada dalam projek ini. Di dalam bab III, akan diterangkan metodologi projek dimana segala perkakasan yang digunakan akan diterangkan secara terperinci. Antaranya ialah lakaran awal, perancangan projek dan penentuan kedudukan motor servo pada bahagian tangan robot

Bab IV pula, menerangkan mengenai perlaksanaan projek antaranya pembinaan struktur tangan robot, litar yang digunakan serta kos yang diperlukan untuk membuat bahagian tangan robot. Selain itu juga, terdapat beberapa eksperimen dijalankan untuk memastikan projek ini berjaya.

Akhir sekali ialah bab V, iaitu mengenai cadangan untuk menambahbaik projek dan kesimpulan daripada melakukan projek robot humanoid ini.

BAB II

KAJIAN LITERATUR

Di dalam bab 2 menerangkan tentang kajian-kajian yang telah dibuat untuk projek ini. Kajian telah dibuat ke atas robot-robot yang telah dibina sebelum ini. Selain itu terdapat kajian tentang komponen yang digunakan di dalam projek ini. Dengan membuat beberapa kajian ke atas robot sebelum ini, terdapat perbezaan pada setiap projek robot manusia yang telah dibuat. Perbezaan yang paling ketara adalah pada sistem dan prosedur yang digunakan untuk menggerakkan sesuatu robot itu. Walaupun terdapat perbezaan pada jenis sistem yang digunakan, namun bagi sistem penggerak kebanyakannya masih lagi menggunakan sistem yang sama iaitu motor servo. Disamping itu, perbandingan antara kajian robot tersebut dengan projek ini dibuat untuk memastikan projek ini berjalan lancar. Dengan ini, pembinaan *Humanoid Robot* ini dapat dijalankan berpandukan kajian-kajian yang dilakukan sebelum ini.

2.0 KAJIAN LITERATUR

Di dalam menjayakan projek robot ini, beberapa kajian telah dilakukan bagi memastikan projek ini berjaya dilaksanakan. Antara kajian yang dilakukan adalah seperti berikut:

Berdasarkan kombinasi ciri-ciri teknikal:

1. Bilangan paksi

Disini bilangan paksi perlu di ambil kira kerana setiap pergerakkan robot yang hendak dihasilkan perlu dikaji terlebih dahulu jumlah paksi yang sesuai.

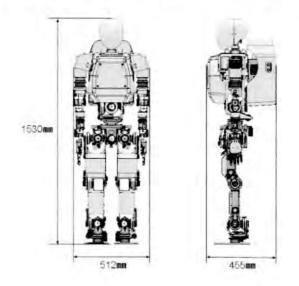
2. Jenis sistem kawalan

Di dalam melaksanakan projek robot ini, jenis sistem kawalan perlu dititik beratkan kerana jika sistem kawalan yang hendak digunakan tidak bersesuaian maka perlaksanaan projek ini tidak akan berhasil.

3. Jumlah kerja (work volume)

- Mudah untuk diprogramkan
- o Ketepatan pergerakan
- Kapasiti mengangkat beban.

2.1 KAJIAN SELIDIK HUMANOID ROBOT.


Selain daripada merujuk kombinasi ciri-ciri teknikal sesebuah robot dan motoservo, kajian telah dilakukan pada robot-robot yang telah sedia ada antaranya adalah:-

- Biped Humanoid Robot [8]
- Robot ASIMO [5]
- Charrobot [9]

2.1.1 Biped Humanoid Robot [8]

Robot Wabian 2 ini adalah hasil dari kajian yang dilakukan di makmal Tako Takanishi di Jepun. Dibina untuk menyertai pertandingan RoboCup 2006. Robot Wabian 2 telah direkabentuk dengan tujuan membangunkan satu robot manusia dengan ketinggian 1500 [mm], dan beratnya 60 [kg]. [8]

Bawah adalah lukisan dan spesifikasi tentang Robot Wabian 2

RAJAH 2.0: Struktur dalaman robot

9

Ketinggian	1530 mm 64.5 kg Bersama bateri 60 kg Tanpa bateri	
Berat		
DOF	Kaki : 7 DOF untuk 2 belah Pinggang : 2 DOF Tangan : 10 DOF untuk 2 belah Leher : 3 DOF Badan : 2 DOF Jumlah : 41 DOF	
Sensor	6 paksi Tekanan / tork Sensor Sensor Gambar Pengekod bermagnet	
Penggerak	DC Servomotor	
Bateri	Bateri Ni-H	

JADUAL 2.0: spesifikasi tentang Robot

Antara tujuan pembinaan adalah untuk membuat kerja rumah, membantu dalam proses perubatan serta membantu dalam proses mencari dan menyelamat. Dalam masa terdekat, fenomena masyarakat berumur akan berlaku di Jepun. Ia adalah satu faktor mustahak untuk orang tua untuk menyimpan tenaga mereka dan mental yang sihat. Oleh itu, terdapat peningkatan keperluan untuk menubuhkan suatu model berjalan yang mesra manusia bahawa boleh disesuaikan untuk rawatan perubatan, dan keperluan untuk pemulihan.

Ia mempunyai 2 cara asas berjalan iaitu, jalan secara lutut menegak atau menegang dan jalan secara konvensional. Pada bahagian kaki mempunyai ia mempunyai 14 DOF (*Degree Of Freedom*), iaitu 7 DOF pada sebelah kaki. Ia menggunakan *servomotor* sebagai penggerak utama.[8]