APPROVAL

'I hereby approve have read this thesis submitted to the senate of UTeM and have accepted this thesis as partial fulfillment of the requirement for the degree in Bachelor of Mechanical Engineering (Design and Innovation) '.

Signature	:
Supervisor 1	: EN. MOHD AFZANIZAM BIN MOHD ROSLI
Date	:

AN AERODYNAMICS STUDY OF BODY WORK OF FORMULA STUDENT RACE CAR

MUHAMAD BIN MANAP

This report is submitted in partial fulfillment of the requirement for the Bachelor of Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

DECLARATION

"I hereby, declared this thesis entitled 'AN AERODYNAMICS STUDY OF BODY WORK OF FORMULA STUDENT RACE CAR'

is the results of my own research except as cited in the references".

Signature :

Author's Name : MUHAMAD BIN MANAP

Date :....

DEDICATION

To my beloved family especially my late father, Manap bin Abdullah and all my friends.

ACKNOWLEDGEMENT

First of all, I want to express my grateful to ALLAH S.W.T., The Most Gracious, The Most Merciful for ease the way for me to finish this thesis and for the strength that keeps me standing and for the hope that keeps me believing the positive possibilities for my thesis.

I also want to express my sincere gratitude to my supervisor, Mr. Mohd Afzanizam bin Mohd Rosli, who have given his fine guidance, whelming support and consideration throughout the completion of the thesis.

Then, I would like to thanks to all UTeM lectures and technicians especially Mr Hairuddin for help guidance in Rapid Prototyping fabrication and Mr Razmi for cooperation and guidance in wind tunnel testing.

Last but not least, I would like to thank to my family who inspired, encouraged and fully supported me for every obstacles and hurdles in completing this thesis . In giving me not just financial, but morally and spiritually. To my friends for their cooperation and help during this thesis carried out. I hope that this thesis can give much informations to all who needs.

ABSTRACT

Aerodynamics study on the bodywork of Formula Student Race Car executed in order to analyze the effect of drag force and lift force acting on the car's body shape. This study focus on analyzing and redesign of the bodywork of Formula Student UTeM in term of drag and lift force reduction. The Formula Student bodywork measured using 3D-scanner and the rest of the dimension will be measured using measuring tape. Next, the model of Formula Student UTeM modeled using SolidWorks 2008 software. In order to define the effect of drag force and lift force, two method uses this is wind tunnel method and CFD techniques. Using Fluent 6.2, CFD techniques will used to determine the aerodynamics effect on the Formula Student car shape and validated using wind tunnel result. Drag coefficient and lift coefficient observed and analyze on 1:15 scale model for both method. As result, the C_D based on CFD simulation differs as much as 2.28% while C_L differs as much as 82.62% compared to wind tunnel. Similitude technique used in order to validate CFD result at 1:1 scale model. Three new designs proposed by modification on 1:1 model and Design 1 chosen which decreased C_D as much as 0.03% and C_L as much as 0.05% compared to existing Formula Student Race Car model by using CFD technique.

ABSTRAK

Kajian aerodinamik ke atas badan kereta lumba Formula Student dijalankan bertujuan menganalisis kesan daya seret, dan daya angkat yang bertindak atas bentuk badan kereta. Kajian ini memberi fokus dalam mengkaji dan mereka bentuk kembali bentuk badan kereta Formula Student UTeM dalam mengurangkan kesan daya seret dan daya angkat. Badan kereta Formula Student UTeM pada mulanya diukur menggunakan pengimbas 3D (3D scanner) dan dimensi selainnya diukur menggunakan pita pengukur. Kemudian, model bentuk badan kereta Formula Student UTeM dilukis menggunakan perisian SolidWorks 2008. Untuk mengkaji kesan daya seret dan daya angkat, dua kaedah digunakan iaitu melalui kaedah menggunakan terowong angin dan kaedah menggunakan perisian CFD. Dengan menggunakan Fluent 6.2, CFD digunakan untuk menentukan kesan aerodinamik atas bentuk badan Formula Student dan disahkan dengan keputusan terowong angin. Pekali daya seret, dan daya angkat dikenalpasti dan dikaji ke atas model berskala 1:15 untuk kedua-dua kaedah. Sebagai keputusan, C_D mengikut simulasi CFD berbeza sebanyak 6.67% dan C_L sebanyak 82.62% berbanding kaedah menggunakan terowong angin. Kaedah persamaan digunakan untuk mengesahkan keputusan CFD pada model berskala 1:1. Tiga rekabentuk baru dicadangkan melalui pengubahsuaian pada model berskala 1:1 dan Design 1 dipilih kerana megurangkan C_D sebanyak 0.03% dan C_L sebanyak 0.05% berbanding kereta lumba *Formula Student* asal menggunakan kaedah CFD.

TABLE OF CONTENT

CHAPTER	SUB.	JECT	PAGES
	DEC	LARATION	ii
	ACK	NOWLEDGEMENT	iv
	ABS'	TRACT	V
	ABS'	TRAK	vi
	TAB	LE OF CONTENT	vii
	LIST	TOF TABLES	xi
	LIST	COF FIGURES	xii
	LIST	T OF SYMBOLS	xiv
	LIST	COF APPENDICES	xvi
CHAPTER I	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objective	2
	1.4	Scope	2
	1.5	Benefit of study	3
	1.6	Content Outline	3
CHAPTER II	LITI	ERATURE REVIEW	4
	2.1	Significant of study	4
	2.2	Formula Student	5

CHAPTER

SUBJECT	
---------	--

	2.2.1	Event	5
	2.2.2	UTeM Formula Student	7
		Car	
2.3	Aerod	lynamics	9
	2.3.1	Aerodynamics Drag	10
	2.3.2	Aerodynamics Lift	12
	2.3.3	Boundary Layers	13
	2.3.4	Flow Separation	13
	2.3.5	Wake	14
	2.3.6	Laminar Flow and	15
		Turbulent Flow	
	2.3.7	Reynolds Number	16
	2.3.8	Aerodynamics in	16
		Race Car	
2.4	CFD 7	Technique	17
	2.4.1	Structure of CFD code	18
	2.4.2	Governing Equation	19
	2.4.3	Turbulence Model	20
		2.4.3.1 Spalart-Allmaras	20
	2.4.4	Mesh Generation	21
	2.4.5	Boundary Condition	23
2.5	Wind	Tunnel Testing	23
	2.5.1	Blockage Effect	24
	2.5.2	Wind Tunnel Machine	25
2.6	Softw	are	26
	2.6.1	Fluent 6.2	26
	2.6.2	SolidWorks 2008	26
2.7	Rapid	prototyping	27

CHAPTER	SUB	JECT		PAGES
CHAPTER III	MET	METHODOLOGY		
	3.1	Metho	odology Flow Chart	29
		3.1.1	Literature Review	31
			Phase	
		3.1.2	Measurement and	31
			Modeling Phase	
		3.1.3	Analysis Phase	32
		3.1.4	Fabrication Phase	32
		3.1.5	Wind Tunnel	33
			Testing Phase	
		3.1.6	Redesign Phase	33
	3.2	Mode	ling Formula Student Race Car	33
	3.3	Fabric	cation	35
	3.4	Analy	sis Parameter	37
	3.5	Wind	Tunnel Test	38
		3.5.1	Blockage Effect	38
		3.5.2	Wind Tunnel Procedure	39
	3.6	CFD 7	Fechnique	41
		3.6.1	Grid Definition and Boundary Condition	42
		3.6.2	Mesh Procedure	42
		3.6.3	CFD Analysis Procedure	45
CHAPTER IV	RES	ULT AN	ND DISCUSSION	46
	4.1	Wind	Tunnel Test	46
		4.1.1	Sample Calculation	47
	4.2	CFD S	Simulation	51
		4.2.1	Sample Calculation	53
	4.3	Discu	ssion	55
		4.3.1	Comparison of Coefficients of Drag	55

CHAPTER SUBJECT

Х

		4.3.2	Comparison of Coefficients of Lift	56
		4.3.3	Different result between CFD and	57
			Wind Tunnel Testing	
		4.3.4	CFD Validity Test	58
		4.3.5	Similitude	60
`	4.4	Redes	ign/Modification	62
		4.4.1	Redesign Consideration	62
		4.4.2	Redesign Results	64
CHAPTER V	CON	CLUSI	ON AND RECOMMENDATION	66
	5.1	Concl	usion	66
	5.2	Recon	nmendation	67
		5.2.1	Recommendation for Further	67
			Research and Study	
		5.2.2	Recommendation for Improvisation	67
			of the UTeM Formula Student Race	
			Car	
	REFI	ERENC	ES	69
	DIDI	TOOD		

	0)
BIBLIOGRAPHY	73
APPENDICES	74

LIST OF TABLES

NO.	TITLE	PAGES
3.1	Boundary Condition setted for CFD analysis	42
4.1	Validity Test Result	60
4.2	C_D and C_L at 15 ms ⁻¹ for 1:1 scale and 1:15 scale race car model	61
4.3	Design Generated by Removing Selected Feature	63
4.4	Redesign Results	64

LIST OF FIGURES

NO. TITLE

PAGES

2.1	The Race Cars Lined Up at Starting Grid	7
2.2	UTeM Formula Student Race Car	8
2.3	Students and Technicians Involve In Completion of the Race Car	8
2.4	The Race Track Used For Racing Event	9
2.5	Aerodynamics force reacted on a race car	12
2.6	Typical boundary-layer velocity profile	13
2.7	A flow past a cylinder at low flow velocity	14
2.8	Flow about bodies in uniform subsonic flow	15
2.9	Turbulent and Laminar Flow in Pipes	16
2.10	Illustrate ANSYS CFX procedure	18
2.11	Component of Subsonic Wind Tunnel	25
3.1	Methodology Flow Chart	30
3.2	Modelling Consideration on UTeM Formula Student Race Car	34
3.3	UTeM Formula Student Race Car modeled using SolidWork 2008	35
3.4	FDM STRATASYS 400mc	36
3.5	FDM STRATASYS 400mc configuration	36
3.6	MP130D Subsonic Wind tunnel (downstream fan)	38
3.7	The Distance For X Calculation	40
3.8	Symmetrical Model with Computational Domain Box drawn in	43
	SolidWorks 2008	
3.9	Mesh created using Gambit 2.2	44
3.10	Boundary Condition set at Gambit 2.2	45

4.1	Load cell for Drag and Lift Force Reading	47
4.2	FS 1:15 Scale Model under Wind Tunnel Test	50
4.3	Contours of Z-Velocity Magnitude	51
4.4	Contours of Static Pressure	52
4.5	Drag Force and Frontal Area generated by Fluent 6.2	53
4.6	Lift Force and Frontal Area generated by Fluent 6.2	54
4.7	Comparison between C_D at Wind Tunnel Test and CFD Simulation	55
4.8	Comparison between C_L at Wind Tunnel Test and CFD Simulation	56
4.9	Aerofoil grid	58
4.10	Velocity contour for 0 degree angle of attack	59
4.11	Pressure contour for 0 degree angle of attack	59
4.12	Velocity contour for 3 degree of angle of attack	59
4.13	Pressure contour for 3 degree of angle of attack	60
4.14	Contours of Static Pressure generated by Fluent 6.2	62
4.15	Feature Selected to Be Remove from Body Work	63

PAGES

LIST OF SYMBOLS

А	=	Reference area
CAD	=	Computer Aided-Design
C _D	=	Coefficient of Drag
CFD	=	Computational Fluid Dynamics
C_L	=	Coefficient of Lift
F _D	=	Drag force
F _L	=	Lift force
FS	=	Formula Student
L	=	Characteristic length
L_{M}	=	Characteristic length of model (scale 1:15)
L _P	=	Characteristic length of prototype (scale 1:1)
ρ	=	Density of the fluid
ρ_{M}	=	Density of the fluid of model (scale 1:15)
ρ_P	=	Density of the fluid of prototype (scale 1:1)
Re	=	Reynolds Number
Re _M	=	Reynolds Number for model (scale 1:15)
Re _P	=	Reynolds Number for prototype (scale 1:1)
μ	=	Dynamics viscosity of the fluid
μ_{M}	=	Dynamics viscosity of the fluid for model (scale 1:15)
μ_P	=	Dynamics viscosity of the fluid for prototype (scale 1:1)
V	=	Kinematic viscosity of the object relative to the fluid
VP	=	Kinematic viscosity of the object relative to the fluid for prototype
		(scale 1:1)

v_{M}	=	Kinematic viscosity of the object relative to the fluid for model
		(scale 1:15)
UTeM	=	Umiversiti Teknikal Malaysia Melaka
WYSIWYG	=	What You See Is What You Get

LIST OF APPENDICES

NO. TITLE

PAGES

А	Wind Tunnel Experimental Result	74
В	UTeM Existing Formula Student Race Car Drawing	80
С	Formula Student Race Car Design 1 Drawing	81
D	Formula Student Race Car Design 2 Drawing	82
E	Formula Student Race Car Design 3 Drawing	83

CHAPTER I

INTRODUCTION

1.1 Introduction

Formula Student (FS) is a student engineering competition held annually in the UK. Student teams from around the world design, build, test, and race a small-scale formula style racing car [16]. It was authorized by the Institution of Mechanical Engineers and the Society of Automotive Engineers (SAE) and applies the same rules as the original SAE. The cars are judged based on criteria include both static and dynamic events. The average speed for the competition is about 60kph (37mph) [9].

Aerodynamics is important in any type of vehicle design. The potential of aerodynamics to increase the performance of the race car is now well established [32]. The field of CFD has a broad range of applicability. The ultimate goal of the field of CFD is to understand the physical event that occurs in the flow of fluids around and within designated objects [21].

A wind tunnel is a research tool developed to assist with studying the effects of air moving over or around solid objects [10]. Wind tunnel use widely before the invention of CFD and has been the experimental method for aerodynamics study.

1.2 Problem Statement

In recent years of tournament, teams participate in Formula Student Competition improvise on their car aerodynamics. Many research conducted in order to reduce drag force acting on the car and exposed student the use of aerodynamics. Usages of wind tunnel and CFD among student have evolved the car shape and improve its aerodynamics. During this study we can simplified the problem as listed below:

- What are designs that improve aerodynamics efficiency?
- What factors that affect aerodynamics?
- What is C_D for Formula Student Race Car?

1.3 Objective of Study

- To study existing UTeM Formula Student Race Car in term of coefficient of drag, C_D and coefficient of lift, C_L.
- 2) To improve existing Formula Student in term of CD and CL.
- 3) To design the new FS bodywork

- Design the design will base on UTeM current Formula Student Race Car. The design will be drawn using CAD software.
- Analysis Analysis will be focus on aerodynamics of the car bodywork. This includes the aerodynamics features that can be added to optimize aerodynamics effect. Analysis will be done in CFD.
- Fabrication A scale model will be fabricated using Rapid Prototyping. The detail drawing will be generated by CAD and scale down using Insight software which used for rapid prototyping interface.
- Wind Tunnel Testing Test will be run using scale model. Wind tunnel analysis then conducted.

1.5 Benefit of Study

This study will define the use of CFD and wind tunnel in determining drag force, lift force and pressure distribution. It also defines the factors which affect the aerodynamics force on the Formula Student Race Car. In outcome, UTeM Formula Student Race car will have better bodywork for their car in term of aerodynamics.

1.6 Content Outline

This section will briefly explain about this project due to its importance and boundary. In this section, we will focus on project background, objective of study, problem statement, scopes, and benefit of study. **CHAPTER II**

LITERATURE REVIEW

A literature search was performed in order to study, analysis and design Formula Student Race Car. Consume resources from journals, literature books, and internet, the review has been made based on related subjects. This included the CFD techniques and Wind Tunnel Testing.

2.1 Significant of study

Singh et. (2004) stated the effect of drag on the moving vehicle is proportional to the square of velocity, so with increase in velocity (at approximately 50km/h) aerodynamics drag becomes one of the prominent factors.

Frédérique et. (2003) say that as it has been shown that 40% of the drag coefficient depends on the external shape and most of it on the rear of the geometry, a numerical optimization process is proposed here in order to seek innovative low-drag car shapes.

2.2 Formula Student

Formula Student is the biggest and best of its kind in Europe. Run by the Institution of Mechanical Engineers (IMechE), in partnership with Airbus, Autodesk, Honda Racing F1 Team, IET, Learning Grid, National Instruments, RS Components, Shell and Toyota, it promotes careers and excellence in engineering, by challenging university students to design, build, develop, market and compete as a team with a small single seater racing car [1].

2.2.1 Event

There are 5 entry classes in Formula Student, designed to allow progressive learning, which is:

Class 1 - Teams design, manufacture and race fully working cars built solely for the event, the car can not be entered into class 1 again after its first year, and instead it can be entered into class 1-200.

- Class 1a Alternative fueled class where more of an emphasis is placed on the environmental impact of racing.
- Class 1-200 The car from the previous years class 1 entry is re-entered and reengineered to allow the students to gain experience for the class 1 event.
- Class 2 Teams that have a car that is nearly fully ready for class 1 but do not compete in the dynamic events.
- Class 3 Intial entry point into Formula Student in which teams design cars to Formula SAE rules but do not manufacture them, allowing them to get some good design feedback before they manufacture.

The cars are judged by industry specialists on the following criteria:

Static Events

- Design (150), Cost (100) & Presentation Judging (75)
- Technical & Safety Scrutinizing
- Tilt Test
- Brake & Noise Test

Dynamic Events

- Skid Pan (50)
- 1Km Sprint (150)
- 75m Acceleration (75)
- 22Km Endurance (350) & Fuel Economy (50)

2.2.2 UTeM Formula Student Race Car.

UTeM Formula Student Race Car developed by Faculty of Mechanical Engineering in order to enter Formula Varsity UTeM 2008. The competition was held on 10th August 2008, organized by Fakulti Kejuruteraan Mekanikal (FKM) and Hal Ehwal Pelajar dan Alumni (HEPA), UTeM. There are five participants for this competition which from Politeknik Sultan Salahuddin Abdul Aziz Shah, University of Nottingham, Universiti Putra Malaysia, Politeknik Kota Bharu and UTeM.

Figure 2.1: The Race Cars Lined Up at Starting Grid

The car was built by 2nd year students from Bachelor of Mechanical Engineering (automotive) with assistant of university technician and lecturer. The race built based Formula Varsity Technical Specification which provided by UTeM as organizer.