"I hereby declare that I have read this report and in my opinion this report is qualify to be awarded the Degree of Bachelor Mechanical Engineering (Design & Innovation)

> Signature Supervisor Name Date

1

: Mohd. Rizal Bin Alkahari.

DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA) EVALUATION OF CAR AUDIO FRONT PANEL

MELLVYNE SIGO

This report is submitted to the Faculty of Mechanical Engineering to fulfill the partial requirement for awarding the Degree of Bachelor Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > 8th May 2007

"I hereby declare that this report is made by myself except for summary and statement that each of it I declared the sources"

> Signature Author Name Date

: Mellvyne Sigo : 8th May 2007

ACKNOWLEDGEMENT

First of all I want to thank JESUS, My LORD, My MASTER and My SAVIOR, who has always loved me, helped, guided and protected me until I can finish my Projek Sarjana Muda (PSM) and this thesis. I would like to thank my Supervisor, Mr. Mohd. Rizal B. Alkahari for always monitor, guide and correct me along this PSM. I believe that this PSM and thesis can be done because of your effort to ensure that the objective of my project is achieved and successful. Beside that, thank you so much for the time that you have spend with my project along the PSM period.

Last but not least, my special thanks to Adriana Mathew and to all my family and friends for always encourage me and gave me a moral support. Thank you so much and I love you all! God bless u all...

ABSTRACT

Design for Manufacturing and Assembly (DFMA) is a technique for reducing the cost of a product by breaking the product down into its simplest components. This paper is a detailed study which on the improvement of car audio front panel by using the DFMA approach. The Boothroyd-Dewhurst which concentrates on manual assembly methodology was used for the analysis of the existing product design in order to simplify and reduce the number of parts. Based on the assembly worksheet analysis of the current design, the number of parts for the current design is 25 parts with the number of operation assembly is 32. The time needed to complete assembly the current product is 146.12 seconds. Meanwhile, the assembly cost for the current product is 5.86 cents. As a result, the design efficiency for the current design is 20%. To ensure that the improvement of the current design is achieved, the analysis for the improved design must be made using the Boothroyd-Dewhurst method. Based on analysis done, it is found that the number of parts for the improved design can be reduced to 16 parts with the number of operation for the product assembly is reduced to 18. In order to assemble the current design, the time needed is 71.97 seconds. In the meantime, the assembly cost for the improved design is 2.89 cents. It is found that the design efficiency for the improved design is 67%. The comparison between assembly worksheet analysis for the current design and the improved design are also made to obtain the percentage of improvement. Therefore, the improvement in term of the number of parts is 36%, 50.7% improvement in assembly time, 50.7% improvement in assembly cost, 43.8% improvement in the number of operation and 70% improvement in design efficiency.

ABSTRAK

Rekabentuk untuk Pembuatan dan Pemasangan (DFMA) adalah teknik untuk mengurangkan kos produk dengan mempermudahkan komponen-komponen yang terdapat di dalam produk tersebut. Teknologi "DFMA" ini boleh membawa kepada pengurangan jumlah komponen sehingga menjadikan produk tersebut mudah untuk dikendalikan dan dipasang semasa proses pemasangan produk. Tesis ini adalah kajian terperinci yang membahaskan tentang pembaikan ke atas panel hadapan audio kereta dengan menggunakan pendekatan "DFMA". Sehubungan dengan itu, kaedah Boothroyd-Dewhurst yang lebih berfokus kepada pemasangan manual telah digunakan untuk mempermudahkan serta mengurangkan jumlah komponen produk yang sedia ada. Berdasarkan keputusan analisa lembaran kerja pemasangan bagi produk yang sedia ada, jumlah komponen yang terdapat pada produk tersebut adalah sebanyak 25 komponen dengan melibatkan sebanyak 32 operasi dalam pemasangan produk tersebut. Masa yang diperlukan untuk pemasangan produk pula adalah sebanyak 146.12 saat. Manakala bagi kos pemasangan produk adalah sebanyak 5.86 sen. Oleh yang sedemikaian, kecekapan produk bagi produk yang sedia ada adalah sebanyak 20%. Bagi memastikan pembaikan terhadap produk yang sedia ada tercapai, analisa terhadap rekabentuk baru produk perlulah dilakukan dengan menggunakan kaedah Boothroyd-Dewhurst. Justeru itu, merujuk kepada analisa yang telah dibuat, didapati jumlah komponen bagi produk tersebut telah dikrangkan kepada 16 komponen dengan jumlah operasi yang terlibat ialah sebanyak 18 operasi. Masa pemasangan produk yang diperlukan pula adalah sebanyak 71.97 saat. Manakala bagi kos pemasangan produk adalah sebanyak 2.89 sen. Selain itu, didapati juga kecekapan produk bagi rekabentuk baru produk adalah sebanyak 67%. Perbandingan di antara rekabentuk lama dan rekabentuk baru produk juga dibuat bagi mendapatkan peratusan pembaikan. Justeru itu, peratusan pembaikan dari segi jumlah produk ialah 36%, masa pemasangan; 50.7%, kos pemasangan; 50.7%, jumlah operasi; 43.8%, dan kecekapan rekabentuk meningkat sebanyak 70%.

V

CONTENTS

CHAPTER	ITEMS	PAGE
1	INTRODUCTION	1
	1.1 Objective	4
	1.2 Scopes	4
2	LITERATURE REVIEW	5
	2.1 Definition of DFMA	5
	2.1.1 Design For Manufacture (DFM)	6
	2.1.2 Design For Assembly (DFA)	9
	2.2 Methods of DFMA	16
	2.3 Effect of Implementing DFMA	21
	2.4 Example of Case Study on DFMA	25
	2.5 The Benefits of DFMA	31
3	METHODOLOGY	32
	3.1 Method Selection	32
	3.2 Procedures of Boothroyd-Dewhurst Method	33
4	ANALYSIS & DISCUSSIONS	42
	4.1 Analysis of Car Audio Front Panel	42
	4.1.1 Mechanism of the product	42
	4.1.2 Function & critics of the existing product	51

vi

4.1.3 Product structure tree of existing product	60
4.1.4 Plan layout of existing product	61
4.1.5 Assembly worksheet analysis of existing	71
product	
4.1.6 Result of the analysis for existing product	79
4.1.7 Assembly worksheet analysis of the	80
existing product	
4.2 Design Concept Selection of Improved Design	81
4.2.1 Design concept selection procedure for	82
improved	
4.3 Mechanism of Improved Design	87
4.4 Assembly Drawing of Improved Design	89
4.5 Product Structure Tree of Improved Design	90
4.6 Plan Layout of Improved Design	91
4.7 Process Flow Chart of Improved Design	99
4.8 Assembly Worksheet Analysis Improved of	100
Design	
4.9 Result of The Analysis for Improved Design	101
4.10 Material Requirement For Improved Design	101
4.10.1 Material selection	102
4.10.2 Selected material	103
4.10.3 Material costs	106
4.11 The Processes Selection	107
4.11.1 The processes selection of improved	111
design procedure	
4.11.2 Summary of processes selection	124
4.12 Comparison Between Old & Improved design	126
4.12.1 Percentage of part reduction	131
4.12.2 Percentage of assembly time reduction	131
4.12.3 Percentage of assembly cost	132

	4.12.4 Percentage of design efficiency	132
	4.12.5 Summary	133
5	CONCLUSION	134
6	FURTHER RECOMMANDATION	135
7	REFERENCES	136-137
	APPENDIX	138-162

C Universiti Teknikal Malaysia Melaka

viii

LIST OF TABLES

TABLE NO.	
-----------	--

TITLE

Table 2.1	Results of DFA Analysis for the Motor Drive	23
	Assembly Proposed Design	
Table 2.2	Results of DFA Analysis for the Motor Drive	24
	Assembly Redesign	
Table 2.3	Comparison of Parts Cost for the Proposed Design and Redesign	24
Table 3.1	Classification, coding and database for affecting manual handling time (sec).	35
Table 3.2	Classification, coding and database manual	38
	insertion and fastening (sec).	
Table 3.3	Example of completed worksheet analysis for the	41
	controller assembly.	
Table 4.1	Plan layout of Daytona MP26, front panel.	61
Table 4.2	No. of items, RP is 2 because PCBA involves two	72
	times operation	
Table 4.3	First digit of the coding system is 3when $(\alpha + \beta) =$	73
	720°.	
Table 4.4	Second digit of the coding system is 3 when PCBA has a size >6 mm and a thickness ≤ 2 mm.	73
Table 4.5	The manual handling code, HC is 33.	74

Table 4.6	Handling time is 2.51 seconds when the handling	74
	code, HC is 33.	
Table 4.7	The part is in the Group II because it will secure	75
	immediately after the insertion.	
Table 4.8	The first digit code is 3because it easily reaches to	75
	the desired location	
Table 4.9	The manual insertion code, IC is 30.	76
Table 4.10	The insertion time per item (s) is 2 seconds when	77
	the manual insertion code, IC is 30.	
Table 4.11	The total operation time is 9.02	78
Table 4.12	The total operation cost is 0.36 cents.	78
Table 4.13	The figure for minimum parts is 1	79
Table 4.14	Completed worksheet analysis of existing product	80
Table 4.15	Example of selection criteria	81
Table 4.16	Concept screening of button set	82
Table 4.17	Concept screening of volume rocker	83
Table 4.18	Concept screening of front cover	83
Table 4.19	Concept scoring of button set	84
Table 4.20	Concept scoring of volume rocker	85
Table 4.21	Concept scoring of front cover	85
Table 4.22	Morphological chart for concept selection	86
Table 4.23	Plan layout of improved design	91
Table 4.24	Completed worksheet analysis of improved	100
	design	
Table 4.25	General recommendation for plastic product.	104
Table 4.26	The properties of thermoplastics	104
Table 4.27	Summary of the selected material	106
Table 4.28	Shape generation capabilities of processes.	109

x

Table 4.29	The compatibility between processes & materials	110
Table 4.30	The processes selection base on the first four	112
	geometric (Preset Key)	
Table 4.31	The Processes Selection Base on the further four	113
	geometric attributes (Preset Key)	
Table 4.32	The process selection based on all shape	114
	attributes (Preset Key)	
Table 4.33	The final process selection based on process	115
	combinations of the part (Preset Key)	
Table 4.34	The processes selection base on the first four	116
	geometric (Volume Rocker)	
Table 4.35	The Processes Selection Base on the further four	117
	geometric attributes (Volume Rocker)	
Table 4.36	The process selection based on all shape	118
	attributes (Volume Rocker)	
Table 4.37	The final process selection based on process	119
	combinations of the part (Volume Rocker)	
Table 4.38	The processes selection base on the first four	120
	geometric (Front Cover)	
Table 4.39	The Processes Selection Base on the further four	121
	geometric attributes (Front Cover)	
Table 4.40	The process selection based on all shape	122
	attributes(Front Cover)	
Table 4.41	The final process selection based on process	123
	combinations of the part (Front Cover)	
Table 4.42	Summary of processes selection	124
Table 4.43	The comparative costs and production volumes	125
	for processing of plastics	

xi

Table 4.44	Economics production quantities for various	125
	molding methods.	
Table 4.45	The summary of comparison between Old Design	133
	and Improved Design	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

Figure 1.1	Traditional manufacturing process	1
Figure 2.1	Who casts the biggest shadow?	6
Figure 2.2	DFA Process	9
Figure 2.3	Geometrical features affecting part handling	10
Figure 2.4	Some other features affecting part handling	11
Figure 2.5	Incorrect geometry can allow part to jam	11
	during insertion	
Figure 2.6	Provision of air-relief passages to improve insertion	12
	into blind holes	
Figure 2.7	Design for ease of insertion	12
Figure 2.8	Provision of chamfers to allow easy insertion.	12
Figure 2.9	Standardize parts	13
Figure 2.10	Single-axis pyramid assembly.	13
Figure 2.11	Provision of self-locating features to avoid holding	13
	down and alignment	
Figure 2.12	Design to aid insertion	14
Figure 2.13	Common fastening methods	14
Figure 2.14	Insertion from opposite directions requires repositioning of assembly.	15

xiii

Figure 2.15	Common assembly automation device	17
Figure 2.16	Configuration of required motor drive	19
	assembly	
Figure 2.17	Proposed design of motor drive assembly.	22
Figure 2.18	Redesign of motor drive assembly following	23
	design for assembly (DFA).	
Figure 2.19	FASTRAC turbopump assembly	25
Figure 2.20	Automotive turbocharger dissembled	26
Figure 2.21	Oil Pump	27
Figure 2.22	Motor Coach	27
Figure 2.23	Existing Design	28
Figure 2.24	New Design	29
Figure 2.25	Original Design Total parts count = 39	30
Figure 2.26	Re-Design Total parts count = 9	30
Figure 3.1	The design details	33
Figure 3.2	The assembly apart	34
Figure 3.3	Alpha, α and Beta, β rotational symmetries for	37
	various parts	
Figure 4.1	The existing product of Daytona MP26, front	42
	panel	
Figure 4.2	The components of Daytona MP26, front panel	43 - 48
Figure 4.3	Product assembly drawing	49
Figure 4.4	The assembly process flow of the Daytona	50
	MP26, front panel	
Figure 4.5	РСВА	51
Figure 4.6	Light guide group	51
Figure 4.7	Diffuser foil	52
Figure 4.8	Zebra connector	52
Figure 4.9	LCD	52

xiv

Figure 4.10	Screen plate	53
Figure 4.11	Keypad	53
Figure 4.12	On / Off button	53
Figure 4.13	Front cover	54
Figure 4.14	Button Set: BND.TS	54
Figure 4.15	Button Set: 1	54
Figure 4.16	Button Set: 2	55
Figure 4.17	Button Set: 3	55
Figure 4.18	Button Set: 4	55
Figure 4.19	Button Set: 5	56
Figure 4.20	Button Set: 6	56
Figure 4.21	Button Set: X-BASS	56
Figure 4.22	Volume rocker	57
Figure 4.23	Soft memory key	57
Figure 4.24	4-Way key	57
Figure 4.25	Compression spring	58
Figure 4.26	Release button	58
Figure 4.27	Eject button	58
Figure 4.28	Back cover	59
Figure 4.29	Thread screw	59
Figure 4.30	Product structure tree of existing product	60
Figure 4.31	LCD assembly	62
Figure 4.32	Equipment for LCD assembly	62
Figure 4.33	Clinching assembly	63
Figure 4.34	Clinching jig	63
Figure 4.35	On/Off button assembly	64
Figure 4.36	Equipment of on/off button assembly	64
Figure 4.37	LCD Module to Front Cover Assembly	65

XV

Figure 4.10	Screen plate	53
Figure 4.11	Keypad	53
Figure 4.12	On / Off button	53
Figure 4.13	Front cover	54
Figure 4.14	Button Set: BND.TS	54
Figure 4.15	Button Set: 1	54
Figure 4.16	Button Set: 2	55
Figure 4.17	Button Set: 3	55
Figure 4.18	Button Set: 4	55
Figure 4.19	Button Set: 5	56
Figure 4.20	Button Set: 6	56
Figure 4.21	Button Set: X-BASS	56
Figure 4.22	Volume rocker	57
Figure 4.23	Soft memory key	57
Figure 4.24	4-Way key	57
Figure 4.25	Compression spring	58
Figure 4.26	Release button	58
Figure 4.27	Eject button	58
Figure 4.28	Back cover	59
Figure 4.29	Thread screw	59
Figure 4.30	Product structure tree of existing product	60
Figure 4.31	LCD assembly	62
Figure 4.32	Equipment for LCD assembly	62
Figure 4.33	Clinching assembly	63
Figure 4.34	Clinching jig	63
Figure 4.35	On/Off button assembly	64
Figure 4.36	Equipment of on/off button assembly	64
Figure 4.37	LCD Module to Front Cover Assembly	65

97 **Visual Inspection Machine** Figure 4.65 98 Figure 4.66 **Equipment for FQC** 98 Station 10 for packaging Figure 4.67 99 The assembly process flow of the improved Figure 4.68 design 107 Sequence of different processes of part Figure 4.69 attributes Comparison of main body before and after 126 Figure 4.70 improvement 127 Comparison of preset key before and after Figure 4.71 improvement. 128 Comparison of volume rocker before and after Figure 4.72 improvement. 129 Comparison of front cover before and after Figure 4.73 improvement. 130 Comparison of plant layout before and after Figure 4.74 improvement

xvii

LISTS OF APPENDIX

APPENDIX

TITLE

PAGE

Α	Motor Drive: (a) Current Design	138
В	Motor Drive: (b) Re-Design	139
C	Grating Arm Assembly (Current Design)	140
D	Grating Arm Assembly (Re-Design)	141
Е	The Assembly Process Flow of the Daytona MP26,	142
	Front Panel	
F	The Assembly Process Flow of Improved Design	143
G	Cost of Thermoplastic Polymers	144
Н	Front Cover	145
I	Back Cover	146
J	Soft Memory Key	147
К	Volume Rocker	148
L	On/Off Button	149
Μ	Keypad	150
N	Eject Key	151
0	Release Button	152
Р	Compression Spring	153
Q	Preset Key	154
R	LCD Screen	155
S	Screen Plate	156

xviii

Т	Zebra Connector	157
U	Light Guide	158
V	Diffuser Foil	159
W	РСВА	160
X	Assembly Drawing	161
Y	Exploded Drawing	162

xix

CHAPTER 1

INTRODUCTION

The history of Design for Manufacturing and Assembly (DFMA) actually begins before the Second World War. Ford and Chrysler was used the DFM philosophy to design and manufacture their weapons, tanks and other military products.

The early and significant work on DFM and DFA are mostly begins in the early 1970s. The first persons that make the research job in this technology are Dr. Geoffrey Boothroyd and Dr. Peter Dewhurst, until in 1982 they were founded the Boothroyd Dewhurst, Inc. (BDI). (Xiaofan Xie. 2006). They created and developed the DFMA concept and use it in developing the products of their company such as the DFMA software system. Meanwhile, their company was trademark by the "DFMA".

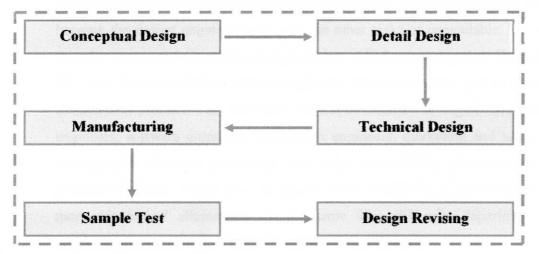


Figure 1.1: Traditional manufacturing process. (Xiaofan Xie. 2006).

Figure 1.1 shows the traditional manufacturing process. The design engineers will create the detail drawing while assembly engineer create the assembly plan base on the conceptual design of the parts. After the detail drawing and the assembly plan was created, the prototype will be produced then make a sample test on it. According to the sample test the workshop then gives a feedback to the design engineers and assembly engineer about the prototype and the result of the sample test. The design engineers and assembly engineers will use that information to redesign the product, the assembly plan and the manufacturing process. The same cycle repeats again and again until arriving at competitive design.

However, there are two things were changes in 1970's (Otto. and Wood. 2006):-

- i) Many new types of plastics were developed, and injection molding technology became widely used because the possibility of low cost plastic components. Beside that the plastic materials also provided different material behavior. For example, many cycles of large elastic deformations without failure are a property useful in making snap-fit mating components. Thus parts that had to be made form metal and screwed together could just be made out of plastic and snap fitted.
- ii) Several companies try to bring their products to the market faster. However, when each time there was a design change made by the manufacturing engineer; product development will hold up and waiting for the Engineering Change Notice (ECN) to be approved by the designer. Often, this process will be delays because the design engineer busy with the other tasks or unavailable. To avoid this, the concept of *Concurrent Engineering (CE)* became popular. The idea of this concept is a combined team of engineers and management will be assigned to each new product. This team may consist of mechanical engineers, electrical engineers, software engineers, production engineers, marketing and sales, and management. Thus, as the design was being generated by the designers, the production people would give feedback about feasibility to manufacture and more economical alternatives. At the same time, the sales department will negotiate about the product outlook and features, and so on.

2

Nowadays, DFMA is widely used in almost all industrial fields especially in the product design and development. It is commonly used to make an improvement in the design of the existing product including printed circuit boards, manual assembly, robotic assembly, and machining. Beside that, most of the companies today realize that the DFMA methodology is very important in manufacturing and assembly because it can give a big impact in the product design efficiency, the number of parts, time of product assembly, and cost to manufacture the product.

The main goal of DFMA is to lower product cost by examining the product design and structure at the early concept stages of a new product. At the same time, the design engineers also have to consider all of the factors that affect the final outputs as early as possible in the design cycle. The extra time spent in the early design stage is much less the time that will be spent in the repeatedly redesign. DFMA also leads to improvements in serviceability, reliability, and quality of the end product. It minimizes the total product cost by targeting assembly time, part cost, and the assembly process in the early stages of the product development cycle. Beside that, DFMA allows for improved supply chain cost management, product quality and manufacturing, and communication between Design, Manufacturing, Purchasing and Management. The life of a product begins with defining a set of product needs, which are then translated into a set of product concepts. Design engineer will takes these product concepts and refines them into a detailed product design. To be truly successful, the DFMA process should start at the early concept development phase of the project. True, it will take time during the hectic design phase to apply DFMA, but the benefits easily justify additional time.

Therefore this project is a highly regard as fully related to the DFMA and has been developed based on DFMA methodology. The title of this project is *Design for Manufacture and Assembly (DFMA), Evaluation of Car Audio Front Panel.*

1.1 Objective

The main objective of this project is to improve the design of the car audio front panel in term of the product design efficiency, the number of parts, the product assembly time, and manufacturing cost of the product. In order to make the improvement, the DFMA approach is applied to analyze the existing product.

1.2 Scopes

The scopes of this project are set at early stage of the project to ensure that the objective of the project can be achieved. The scopes for this project are:-

- i. Study the concept and methods of DFMA.
- ii. Analyze the methods of manufacturing and assembly of the existing product.
- iii. Improve the car audio front panel design by using the DFMA methodology analysis.
- iv. To propose a new design based on analysis made.