

KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

Design and Analysis of Manufacturing System Using Simulation

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree of Bachelor of Manufacturing Engineering (Honours) (Manufacturing Process)

By

Mohd Rajhan Bin Said B050210069

Faculty of Manufacturing Engineering

May 2006

C Universiti Teknikal Malaysia Melaka

KOLEJ UNI	VERSITI TEKNIKAL	KEBANGSAAN MALAYSIA
	BORANG PENGES	AHAN STATUS TESIS*
JUDUL: DESIGN AND	ANALYSIS OF MANU	FACTURING SYSTEM USING SIMULATION
SESI PENGAJIAN : 2/2	005-2006	
Saya	MOHD RA	AJHAN BIN SAID
mengaku membenark Perpustakaan Kolej U syarat-syarat kegunaa	an tesis (PSM/Sarja niversiti Teknikal K in seperti berikut:	ına/Doktor Falsafah) ini disimpan di Cebangsaan Malaysia (KUTKM) dengan
 Tesis adalah hak n Perpustakaan Kole membuat salinan u Perpustakaan dibe antara institusi pe **Sila tandakan (√) 	nilik Kolej Universit j Universiti Teknik untuk tujuan penga narkan membuat s ngajian tinggi.	ti Teknikal Kebangsaan Malaysia. al Kebangsaan Malaysia dibenarkan ijian sahaja. alinan tesis ini sebagai bahan pertukaran
SULIT	(Mengandun atau kepent AKTA RAHSI	gi maklumat yang berdarjah keselamatan ingan Malaysia yang termaktub di dalam A RASMI 1972)
TERHAD	(Mengandun oleh organis	gi maklumat TERHAD yang telah ditentukan asi/badan di mana penyelidikan dijalankan)
√ TIDAK TER	HAD	Disahkan oleh:
(TANDATANGA	N PENULIS)	(TANDATANGAN PENYELIA)
Alamat Tetap: <u>No. 44, Lorong 3, Tr</u> <u>34100, Selama,</u> Perak Darul Ridzuan	<u>nn Sri Selama,</u> <u>.</u>	Cop Rasmi:
Tarikh:		Tarikh:
* Tesis dimaksudkan sebagai disertasi bagi pengajian seca ** Jika tesis ini SULIT atau TI dengan menyatakan sekali se	tesis bagi Ijazah Dokt Ira kerja kursus dan p ERHAD, sila lampirkan ebab dan tempoh tesi	tor Falsafah dan Sarjana secara penyelidikan, atau enyelidikan, atau Laporan Projek Sarjana Muda (PSM). n surat daripada pihak berkuasa/organisasi berkenaan s ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declare this thesis entitled "Design and Analysis of Manufacturing System Using Simulation" is the results of my own research except as cited in the reference.

Signature	:	
Author's Name	:	Mohd Rajhan bin Said
Date	:	May 26 th 2006

C Universiti Teknikal Malaysia Melaka

APPROVAL

This thesis submitted to the senate of KUTKM and has been accepted as fulfillment of the requirement for the Bachelor of Manufacturing Engineering (manufacturing Process) (Honours). The members of the supervisory committee are as follows:

.....

Main supervisor Faculty of Manufacturing Engineering

ABSTRACT

This report is about the application of simulation in manufacturing systems and describes how the WITNESS simulation tool supports the simulation solution deployment. There have several alternatives of simulation deployment are describe includes reduce and increase number of stations. To run the simulation project the line or area that needs an improvement must be studied. The related data is taken and doing an analysis. Finally create and select a model, put the command of element and validate it. This functionality is described in detail and related to real-world examples when possible.

DEDICATION

For my beloved parents, Said bin Tasu and Rapiah binti Abdullah To my supervisor, Prof. Dr. Mohd Razali bin Muhamad And their supportive spirit

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

بسنم اللهِ الرَّ حُمنِ الرَّ حِيْم

Firstly, thanks a lot to Allah s.w.t because of given me a spirit and chance to finish my thesis on time. I would like to thank my parent for given me a moral support, motivation and also in financial support by preparing equipment in the likes of computer and other expense. I would also like dedicate all my friends in which playing a major role of this success. Not forget to my lecturer, Assoc. Prof. Chong Kuan Eng of given me a research project from industry. Thank you to him because expend his time to guide and teach me to solve a research problems.

All the hard work that has been during the spell with my supervisor, Prof. Dr. Mohd Razali bin Muhamad for almost one year. His guide and inspiration in providing technical advisory is a great benefit for me because of his vast experience in industry and education. Thanks to his dedication and hard work, I've managed to complete my thesis on time even though there are problems and challenges during this project. Once again, I would like to dedicate my respect and honor to him for his kindness for guiding and teaching me to become a mature person.

C) Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

Abstract	i
Dedication	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	xii
List of Tables	xiii

CHAPTER 1: INTRODUCTION

1.1	INTRODUCTION 1
1.2	PROBLEM STATEMENT4
1.3	OBJECTIVES5
1.3	SCOPE OF PROJECT

CHAPTER 2: LITERATURE REVIEW

2.1	MANUFACTURING SYSTEM		
	2.1.1	Manufacturing System Components	.7

	2.1.2	Manufacturing System Classification	9
		2.1.2.1 Type I: Single Station	10
		2.1.2.2 Type II: Multi Station Cell	10
		2.1.2.3 Type III: Production Lines	10
	2.1.3	Characteristic of Manufacturing System	10
	2.1.4	Manufacturing Terminology	11
2.2	MOD	ELING A MANUFACTURING SYSTEM	13
	2.2.1	Manufacturing Modeling Technique	13
	2.2.2	Use Simulation of Manufacturing	17
	2.2.3	Advantages of Simulation	19
	2.2.4	Types of Simulation	21
	2.2.5	Discrete of Simulation	22
	2.2.6	Discrete Event vs. Continuous Simulation	25
2.3	ASSE	MBLY LINE BALANCING	27
	2.3.1	Assembly Line	27
	2.3.2	Modeling a Assembly Line	27

2.4	SIMULATION TOOL:	WITNESS	29
-----	------------------	---------	----

CHAPTER 3: METHODOLOGY

3.1 INTRODUCTION	
3.2 SIMULATION PLANNING	

3.3	TOOLS		
	3.3.1	Data Collection	34
	3.3.2	Data Storage	35
	3.3.3	Simulation Software: WITNESS	35
3.4	EXEC	UTION	37
	3.4.1	Optimization	38
	3.4.2	Project Planning	39

CHAPTER 4: DATA COLLECTION

4.1	INTR	ODUCTION	40
4.2	COM	PANY BACKGROUND	40
4.3	PROE	DUCTION PROCESS	41
4.4	ASSE	MBLY LINE	41
	4.4.1	Current Layout	42
	4.4.2	Current Task Time and Station	43
4.5	PROJ	ECT ACTIVITIES	44
	4.5.1	Observation	44
	4.5.2	Parameter Collection	45
	4.5.3	Assembly Line Balancing	46
	4.5.4	COMSOAL Approach	46
	4.5.5	COMSOAL Procedure	47

4.5.6	COMSOAL Advantages47
-------	----------------------

4.5	ANALYSIS	4	8
-----	----------	---	---

CHAPTER 5: SIMULATION MODEL DEVELOPMENT

5.1	INTRODUCTION	49
5.2	MODEL DEFINATION	49
	5.2.1 Part	50
	5.2.2 Buffer	51
	5.2.3 Machine	52
	5.2.4 Labor	53
	5.2.5 Variable	54
5.3	MODEL DEVELOPMENT	55
	5.3.1 Beginning of Simulation Modeling	55
	5.3.2 Assumption	56
5.4	STRUCTURAL MODEL	57
5.5	VERIFICATION	57
5.6	VALIDATION	59
5.7	DETERMINATION OF WARM-UP PERIOD	60

5.8	RUN TIME	61
5.9	SIMULATION MODEL	61

CHAPTER 6: OPTIMIZATION

6.1	INTR	ODUCTION	62
6.2	DESI	GN DESCRIPTION	62
	6.2.1	Problems	63
	6.2.2	Solution	63
	6.2.3	COMSOAL result sequence	65
	6.2.4	Erase the Bottleneck	67
6.3	DESI	GN LIMITATION	70
	6.3.1	Zoning Constraint	70
	6.3.2	Technological Constraint	71
	6.3.3	Parallel	71

CHAPTER 7: RESULTS

7.1	INTRODUCTION	72
7.2	RESULTS FOR CURRENT LAYOUT	72
	7.2.1 Productivity for a week	73

C Universiti Teknikal Malaysia Melaka

	7.2.2	VMI 1 Utilization	74
	7.2.3	T3AB Utilization	76
	7.2.4	T3C Utilization	77
	7.2.5	T3D Utilization	78
	7.2.6	VMI 2B,	79
7.3	RESU	LT FOR NEW LAYOUT	80
	7.2.1	Productivity for a week	80
	7.2.2	VMI 1 Utilization	81
	7.2.3	T3AB Utilization	83
	7.2.4	T3C Utilization	84
	7.2.5	T3D Utilization	85
	7.2.6	VMI 2B	86

CHAPTER 8: DISCUSSION & CONCLUSION

8.1	Discussion	
8.2	Constraint	
8.3	Overall	
8.4	Conclusion	91

REFERENCES	.92
------------	-----

APPENDICES

- A Gantt chart for PSM 1
- B Gannt Chart for PSM 2
- C VMI 1 results (optimized)
- D VMI 1 results (validate)
- E T3AB Results
- F T3C Results
- G T3D Results
- H VMI 2B Results
- I Layouts
- J Data Sheets

LIST OF FIGURES

2.1	The position of the manufacturing	7
	system in the larger production system	
2.2	Types of routing in multiple station manufacturing systems:	
	(a) Variable routing and (b) Fixed routing	8
2.3	Modeling Transfer Machine	15
2.4	Continuous Flow System	16
2.5	Quantity of flow when: a) rate is constant, b) rate is changing	16
2.6	Flow Chart of How Discrete Event Simulation Work	
2.7	Discrete Event cause Discrete State Change	
2.8	Comparison of Discrete Change State Variable	
	and Continuous Change State Variable	26
3.1	The iterative process of simulation model development	33
3.2	Example of stopwatch	34
3.3	Run Time Toolbar; capable	35
3.4	Push and Pull concept between elements	36
3.5	Setup the elements (e.g.: Machine)	
3.6	Research Planning Flow Chart	
4.1	Current Assembly Line Layout	42
5.1	Parts exist in the assembly line (in simulation layout)	50
5.2	PlasticWindowtray, PCBtray, and MetalChassisTray	51
5.3	Ultra Sonic Welding Machine	52
5.4	Pressing Jig	52
5.5	Computer for T3AB – Programming	52

Labor (Machine Modifying)	52
Ultra Sonic Welding Machine	53
Pressing Jig	53
Computer for T3AB – Programming	53
Connection between the stations in simulation	56
Input same as Output	58
Tolerance Graph for Validation	59
Current Assembly Line Precedence Structure	64
Bottleneck	68
VMI 1 utilization for one week	75
T3AB utilization for 1 week	76
T3C utilization for 1 week	77
T3D utilization for 1 week	78
VMI 2 utilization for 1 week	79
Graph for VMI 1 after optimization (run in 1 week)	82
Graph of T3AB after optimization	83
Graph for T3C after optimization	84
Graph for T3D after optimization	85
Graph for VMI2B after optimization	86
	Labor (Machine Modifying) Ultra Sonic Welding Machine Pressing Jig Computer for T3AB – Programming Connection between the stations in simulation Input same as Output Tolerance Graph for Validation Current Assembly Line Precedence Structure Bottleneck VMI 1 utilization for one week T3AB utilization for 1 week T3C utilization for 1 week T3D utilization for 1 week VMI 2 utilization for 1 week Graph for VMI 1 after optimization Graph for T3AB after optimization Graph for T3D after optimization Graph for VMI2B after optimization Graph for VMI2B after optimization

8.1	Parallel	.88	
0.1	Tutule1	.00	

LIST OF TABLES

2.1	Factor in Manufacturing Systems Classification Scheme	9
4.1	Major Parameter in Assembly Line	43
4.2	Task Time and Head Count (Station)	44
5.1	Validation results	60
6.1	COMSOAL result sequence for assembly line	65
6.2	Bottleneck area	69
7.1	VMI 1 utilization for one week	74
7.2	T3AB utilization for 1 week	76
7.3	T3C utilization for 1 week	77
7.4	T3D utilization for 1 week	78
7.5	VMI 2 utilization for 1 week	79
7.6	VMI 1 after optimization	81
7.7	T3AB utilization after optimization	
7.8	T3C utilization after optimization	84
7.9	T3D utilization after optimization	85
7.10	VMI 2B utilization after optimization	86

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

Modern high technology manufacturing systems, such as those in the electronics, semiconductor, aerospace, and automotive industries, can be extremely complex. The complexity of these systems is due to factors such as (Czarnecki, et al., 1997):

- a) Multiple part types made in the same facility/line,
- b) Numerous manufacturing steps (300-500 steps is not uncommon),
- c) Batch processing, very complex equipment which leads to high levels of preventive maintenance and downtime,
- d) Multiple levels of subassemblies, just to name a few.

This complexity combined with the high cost of setting up and maintaining such a system necessitates the use of formal *models* of the system, rather than just relying on experience or simple rules of thumb for performance evaluation and decision making.

Models are intended to support management decisions about the system and a single model will often not be capable of supporting all decisions. Rather, different decisions require different models because various aspects of the design and operation of the system will be important for the questions being asked of the model. While spreadsheet and queuing models are useful for answering basic questions about manufacturing systems, discrete event simulation models are often needed to answer detailed questions about how a complex manufacturing system will perform. Simulation models lend themselves to incorporating additional details about the manufacturing system and therefore often give more accurate estimates of manufacturing system behavior than the simpler models mentioned above, but usually at the cost of more computation.

In general, simulation is a practical methodology for understanding the highlevel dynamics of a complex manufacturing system. Simulation has several strengths including (Bowden Jr., et al., 2003):

- a) Time compression the potential to simulate years of real system operation in a much shorter time.
- b) Component integration the ability to integrate complex system components to study their interactions.
- Risk avoidance hypothetical or potentially dangerous systems can be studied without
- d) The financial or physical risks that may be involved in building and studying a real system.
- e) Physical scaling the ability to study much larger or smaller versions of a system,
- f) Repeatability the ability to study different systems in identical environments or the same system in different environments.
- g) Control everything in a simulated environment can be precisely monitored and exactly controlled.

Next, these are about a Manufacturing Issues Address by Simulation. The following are some of the specific issues that simulation is used to address in manufacturing (Law & McComas, 1999):

- a) The need for and the quantity of equipment and personnel
- b) Number, type, and layout of machines for a particular objective
- c) Requirements for transporters, conveyors, and other support equipment (e.g., pallets and fixtures)
- d) Location and size of inventory buffers
- e) Evaluation of a change in product volume or mix
- f) Evaluation of the effect of a new piece of equipment on an existing manufacturing system
- g) Evaluation of capital investments
- h) Labor-requirements planning
- i) Number of shifts

Performance of a manufacturing system evaluation can be made through a simulation model using (Law & McComas, 1999):

- a) Throughput analysis
- b) Time-in-system analysis
- c) Bottleneck analysis

The evaluations of operational procedures of the manufacturing system are performed in the following areas (Law & McComas, 1999):

- a) Production scheduling
- b) Inventory policies
- c) Control strategies [e.g., for an automated guided vehicle system (AGVS)]

C Universiti Teknikal Malaysia Melaka

- d) Reliability analysis (e.g., effect of preventive maintenance)
- e) Quality-control policies

The following are some of the performance measures commonly estimated by simulation (Law & McComas, 1999):

- a) Throughput
- b) Time in system for parts
- c) Times parts spend in queues
- d) Queue sizes
- e) Timeliness of deliveries
- f) Utilization of equipment or personnel

1.2 PROBLEM STATEMENT

The use of simulation for manufacturing system and analysis is justified for the following reasons:

- a) Experimentation with the real system is infeasible, disruptive and too expensive.
- b) Other mathematical or analytical method will not work.
- c) Need to examine systems as they would operate over a given time frame.
- Need to compare alternative proposed system design, or alternative operating policies for a single system, to see which best meets the specified requirements.

1.3 OBJECTIVES

The outcome of the project is to be achieved through the following objectives:

- a) To developed a primary model of a manufacturing system using WITNESS simulation package.
- b) To study the effects of varying the design parameters on the performance of the manufacturing system.

1.4 SCOPE OF PROJECT

WITNESS simulation package will be used package to develop a simulation in manufacturing system and then to know clearly about the effects when we using a several types of parameter at different values. The design of manufacturing system is normally confronted with the 'what if' question. Physically, to answer such question will incur high cost. Hence, simulation is used as an alternative. A manufacturing system will be selected as a case study. Various design options will be tested. For a selected design layout, various design parameters will be changed and the effects will be studied.

CHAPTER 2 LITERATURE REVIEW

2.1 MANUFACTURING SYSTEM

A manufacturing system is defined as a collection of integrated equipment and human resources, whose function is to perform one or more processing and/or assembly operations on a starting raw material, part, or set of parts. The integrated equipment includes production machines and tools, material handling and work positioning devices, and computer systems. Human resources are required either full time or periodically to keep the system running. The manufacturing system is where the value-added work is accomplished on the part or product. The position of the manufacturing system in the larger production system is seen in Figure 2.1 Examples of manufacturing systems includes (Groover, 2001):

- a) One worker tending one machine, which operates on semiautomatic cycle
- b) A cluster of semi-automatic machines, attended by one worker
- c) A fully automated assembly machine, periodically attended by a human worker
- A group of automated machines working on automatic cycles to produce a family of similar parts
- e) A team of workers performing assembly operations on a production line.

C Universiti Teknikal Malaysia Melaka

Figure 2.1: The position of the manufacturing system in the larger production system.

2.1.1 Manufacturing System Components

Manufacturing system consists of several components. In a given system, these components usually include (Groover, 2001):

- a) Production machines plus tools, fixtures, and other related hardware.
- b) Material handling system.
- c) Computer systems to coordinate and/or control the above components.
- d) Human workers.