DESIGN AND DEVELOPMENT OF RECREATIONAL HUMAN POWERED VEHICLE

MUHAMMAD HANIF BIN MOHD ZANANI

This report is submitted in fulfillment of the requirements for the award Bachelor of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering UniversitiTeknikal Malaysia Melaka

> > MAY 2012

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design-Innovation)"

Signature:	
Supervisor:	MOHD NIZAM BIN SUDIN
Date:	

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature:	
Author: M	UHAMMAD HANIF BIN MOHD ZANANI
Date:	

SPECIAL DEDICATION

ТО

My Beloved Parents En.MohdZanani bin Jamil NorsamsinahbintiSuboh

Also my beloved siblings Muhammad Hazim bin MohdZanani Muhammad Hasif bin MohdZanani Muhammad Hamidi bin MohdZanani Muhammad Haikal bin MohdZanani

ACKNOWLEDGEMENTS

Praise and glory to the almighty Allah S.W.T., God of all creation. In the name of Allah, the Beneficent, the Merciful, my greeting and salutations towards our beloved Prophet Muhammad S.A.W for overseeing this final year project with constantly guiding toward completion.

My heartfelt gratitude is extended to my dedicated supervisor; Mr. MohdNizam bin Sudin for giving me his guidance and support throughout this project. His experience in topics related to this project has given me a boost of confidence in conducting this project. Therefore, special thanks to him for the opportunity given and for the efforts towards the completion of this final year project. My big thanks also go for all technicians at faculty's lab. Their technical assists, are very helpful upon completion of fabricating my project's prototype.

I would like to appreciate the contribution from my family and friends. My father, MohdZanani bin Jamil and mother, NorsamsinahbteSuboh are always giving me inspiration and dedication in every aspect. My appreciation also goes to my friend, who sincerely helped me a lot to make this project a possible success.

ABSTRACT

Engineering Design Process is a technique that ranks the logic for the development of a product by an engineer. A human powered vehicle is a product that is not widely used in Malaysia, especially for recreational activities. Typically, a bicycle is a very well-known human powered vehicle. It is often used for sports and recreational activities among themselves. Therefore, the development of this type of vehicle is important to promote healthy living activities to share with friends and family. The main objective of this project is to develop human powered vehicles, and a functional prototype. Several factors have been identified in detail design of this product. Next, the prototype can be modeled with the help of drawings that were produced. In conclusion, development of human power vehicles is very helpful for Malaysians in general, to give pleasure while enjoying a healthy lifestyle and a better social activity.

vi

ABSTRAK

Proses Rekabentuk Kejuruteraan adalah satu teknik yang member urutan logic bagi membangunkan sesuatu produk oleh seseorang jurutera. Kenderaan kuasa manusia adalah produk yang tidak begitu meluas penggunaannya di Malaysia terutamanya dalam kegiatan rekreasi. Lazimnya, basikal adalah kenderaan kuasa manusia yang lebih dikenali. Ia sering digunapakai untuk kegiatan sukan dan aktiviti rekreasi sesame mereka. Oleh itu, pembangunan jenis kenderaan seperti ini adalah penting bagi mempromosikan kegiatan hidup sihat untuk dikongsi bersamarakan dan keluarga. Objektif utama projek ini adalah membangunkan kenderaan kuasa manusia dan sebuah prototaip yang berfungsi. Beberapa factor telah dikenalpasti di dalam rekabentuk mendalam produk ini. Seterusnya, prototaip boleh dimodelkan dengan bantuan lukisan yang telah dihasilkan. Secara konklusinya, pembangunan kenderaan kuasa manusia sangat membantu rakyat Malaysia amnya, untuk member keseronokan sambil menikmati gaya hidup sihat dan aktiviti social yang lebih baik.

vii

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
	TITLE	i
	SUPERVISOR'S DECLARATION	ii
	AUTHOR'S DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS / TERMS	xvi
	LIST OF APPENDICES	xvii
CHAPTER I	INTRODUCTION	
	1.1 Background	1
	1.2 Objectives	3
	1.3 Scope of product	3
	1.4 Project Schedule	5
CHAPTER II	LITERATURE REVIEW	
	2.1 History of human powered vehicle	6
	2.2 Types of human powered vehicle	11
	2.3 Quadracycle	12
	2.4 Current Technology oh Human Powered vehicle	13
	2.4.1 Current Market	14
	2.4.2 Green Technology Involvement	15
	2.5 Human Powered Vehicle Parts	17
	2.5.1 Steering System	17
	2.5.1.1 Pitman arm types	18
	2.5.1.2 Ackermann Steering Geometry	19
	2.5.2 The wheel	20

CHAPTER III METHODOLOGY

C Universiti Teknikal Malaysia Melaka

3.1 Introduction	22
3.2 Requirement Formulation	24
3.3 Design Process	28
3.3.1 Conceptual Design	29
3.4 Design Tools	31
3.4.1 CATIA V5	31
3.4.2 Draft Sketching	33
3.4.3 Parts Position	33
3.5 Embodiment Design	
3.5.1 Product Architecture	35
3.5.2 Configuration Design	36
3.5.3 Parametric Design	36
3.6 Detail Design	
3.7 Prototype	38

4.1 Introduction	40
4.2 Frame layout selection	41
4.2.1 Customer feedback	45
4.2.2 Customer feedback data	46
4.2.3 Analytical strength analysis	48
4.3 Design of power transmission system	56
4.4 Design of steering system	64
4.5 Other components design	72
4.5.1 Design of wheels	73
4.5.2 Design of rear shaft	74
4.5.3 Design of seats	76

CHAPTER V DISCUSSION

5.1 Introduction	78
5.2 Schematic diagram	79
5.3 Assembly product	82
5.4 Prototype development	85

C Universiti Teknikal Malaysia Melaka

CHAPTER VI	CONCLUSION	
	6.1 Introduction	91
	6.2 Conclusion	92
	6.2 Recommendation for future work	93
	REFERENCES	94
APPENDIX A:	LIST REQUIREMENT BOOKLET	96
APPENDIX B:	SURVEY AND INTERVIEW FORM	102
APPENDIX C:	DETAIL DESIGN	103

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Semester 1 PSM Gantt-chart	5
1.2	Semester 2 PSM Gantt-chart	5
4.1	Description of layout frame "A"	41
4.2	Description of layout frame "B"	42
4.3	Description of layout frame "C"	43
4.4	Description of layout frame "D"	44
4.5	data generated from software	50
4.6	Boundary condition generated for all concepts.	50
4.7	Strength analysis comparison	51
4.8	table of morphological matrix in selecting power	58
	transmission system	
4.9	results of the best design consideration from	59
	morphological matrix	
4.10	Timing belt specification	60
4.11	Chain drive specification	61
4.12	Comparison of advantages between timing belt and	62
	chain drive	
4.13	Transmission system against the applicable condition for	62
	design purpose	
4.14	table of morphological matrix in selecting steering	66
	system	
4.15	result of the best steer system mechanism to install from	67
	morphological chart	
4.16	List of parts and components	72

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	No steering and pedal for the first bicycle founded also	7
	2008)	
2.2	Thomas McCall on his rear-driven velocipede in 1869.	8
	From [adapted from] Books. "Bicycling News" February	
	6th, 1892.	
2.3	Cyrille Van Hauwaert was a dominant early rider in the	9
	Paris-Roubaix Classic from 1908-1911. (Source: Flickr,	
24	February 2007)	11
2.1	of current technology (Source: via DesignBuzz	11
	September 2008)	
2.5	Existing design of Human powered quadracycle	12
	(source: Quadracycling in Ottawa, 2007)	
2.6	example of the website of current	15
	devolopingquadracycle in market (source: website	
	image capture, December 2011)	
2.7	Pit-arm system in aid of diagram. The ,,box"	18
	involves in changing direction from steering wheel.	
	(Source: Steering Bible, 2011)	
2.8	Diagram on how the front wheel avoiding slip by	19
2.8	extending the geometry to the rear wheel to obtain	19
	the center of turning circle (Source: Andy D	
	2010)	
3.1	Flowchart of the methodology process for this	23

project development

3.2	The flow on how the requirement list obtained.	24
3.3	Requirement-Formulation-Method diagram	25
3.4	The engineering design process (Source: Dieter, G.E.,	28
	Schmidt, L.C., 2009)	
3.5	First sketch, view from side in 2-Dimensional display	30
3.6	Second sketch, top view in 2-Dimensional display	30
3.7	The step in how CATIA works for this product design.	32
3.8	The static analysis on positioning the rear wheel.	34
4.1	Design layout frame "A"	41
4.2	Design layout frame "B"	42
4.3	Design layout frame "C"	43
4.4	Design layout frame "D"	44
4.5	Pie chart from selection of interviewed person	46
4.6	Graph comparison selection of 4 concepts based on	47
	survey	
4.7	Selected frame layout	48
4.8	Round-hollow profile with 10mm inner radius and	48
	15mm outer radius.	
4.9	Round-solid profile with 15mm radius	49
4.10	Rectangular profile with sizes of 40mm X 20mm.	49
4.11	3 different profile after ribbing.	49
4.12	Maximum displacement of concept round-hollow profile	52
4.13	Maximum displacement of concept round-solid profile	52
4.14	Maximum displacement of concept rectangular profile	53
4.15	Von-mises stress value of concept round-hollow profile	53
4.16	Von-mises stress value of concept round-solid profile	54
4.17	Von-mises stress value of concept rectangular profile	54
4.18	Concept "1" sketch with pedals force directly transmit at	56
	front shaft and wheels	
4.19	Concept ,2" sketch with pedals force is indirectly	57
	transmitted to the rear shaft via timing belt and pulleys.	
4.20	Concept "3" sketch with pedals force is indirectly	57
	transmitted to the rear shaft via chain drive and sprocket.	
4.21	Frame design had decided to install the sprocket and foot	59

	pedals just near to the front seat (arrows)	
4.22	Suggested sprocket sizes, belt/chain sizes applicable for	60
	installation into vehicle.	
4.23	timing belt	60
4.24	chain drive and sprocket	61
4.25	Isometric view of front sprocket and foot pedals	63
4.26	Isometric view of front sprocket after installation to the	63
	frame.	
4.27	isometric view after chain drive, sprocket installed to	64
	frame	
4.28	Sketch for concept "A" combination of more than one	65
	mechanism to assist the movement of front wheels.	
4.29	Sketch for concept "B". a direct mechanism which the	65
	joint in circle representing direct linkage from steering	
	wheel to the front wheel	
4.30	Sketch for concept "C". there is direct connection from	66
	steering wheel. But, the existence of rack and pinion	
	(rectangular box) smoother the steering movement	
4.31	The isometric view of overall steer system.	69
4.32	Isometric view of steer bar connected to the steering	69
	wheel	
4.33	adjustable height of steering wheel	70
4.34	Assembled view of steering system with aid of attached	71
	front wheels.	
4.35	Assembled view of steering system (front) with aid of	71
	attached front wheels.	
4.36	measurement of the outset radius of the wheel rim	73
4.37	Shaft with radius of 15mm and 866mm in its length	75
4.38	Isometric view of front seat	76
4.39	Isometric view of rear seat	77
5.1	Shaft and wheel schematic diagram	79
5.2	Frame schematic diagram	80
5.3	Steering system schematic diagram	80
5.4	Power transmission system schematic diagram	81
5.5	Brake system schematic system	81
5.6	Seatsschematic diagram	82

5.7	Isometric view of assembled product	83
5.8	Isometric view of exploded product	84
5.9	Photo of kid's go-kart toy	86
5.10	Photo of 2 frame ready to be welded togather	87
5.11	Photo of the frame after weld	88
5.12	the frame looks after installation of wheels an other parts	88
5.13	the steering looks after installation	89
5.14	assembled prototype before finishing	90

LIST OF SYMBOLS / TERMS

SYMBOLS DESCRIPTION

UTeM University Teknikal Malaysia Melaka

- USA United States of America
- TN Tennessee
- CAD Computer Aided Design
- CAM Computer Aided Manufacturing
- CAE Computer Aided Engineering
- M₀ Moment
- F Force
- r distance
- α angle

LIST OF APPENDICES

APPENDIX	TITLE	PAGI		
APPENDIX A	Requirement-List booklet	96		
APPENDIX B	Survey and interview form	102		
APPENDIX C	Detail Design	103		

CHAPTER 1

INTRODUCTION

1.0 BACKGROUND

Healthy lifestyle is the main agenda of human being. Everyone keeps talking about having happier and healthier life to spend with family. Hence, the relationship of obesity cannot be avoided from this issue. Obesity is not type of disease. It's refers to a medical condition that our body having an excessive amount of fat everywhere. Hence the agenda on health issues is closely related to the recreational activities. The project is to develop a vehicle that provides these solutions of the problem stated. The vehicle is moved by human powered so that, exercise can be done during traveling with the vehicle.

Cycling is one of the methods for human powered vehicle for recreation. People tend to choose this type of vehicle because of the simplicity and straightaway. No need other sources of energy in order to handle the bicycle. The torque is forced by human leg to move the bicycle forward. It's varied with different speeds and could be geared by different difficulties to give amount of torque to the bicycle's paddle. On the other side of recreational vehicle, most of the people like to ride without their own energy. That's implicated the invention of electrical or solar powered bicycle. The cost is the issues, and it is really handy and hard to maintain.

When the term leisure is closely related to the recreational activities, people demands doing activities in a group. This will enhance their excitement and enjoyment. The current buggy car in most of the recreation park is the solution. But, this vehicle is not helping people to do exercise while having fun. The problem involves such as a slight pollution on air and sound. It is because; park is the place of pollution-free. Hence, problem may solve if the vehicle is powered by their own leg. Just like riding a bicycle in a group of people.

1.2 OBJECTIVES

The main objective of this project is to carry out a systematic design process in designing a human powered vehicle for recreational purpose. Furthermore, this project is to develop a working prototype of human powered vehicle.

1.3 SCOPE OF PRODUCT

The development of the project needs to be specifically described. Hence, some of the particular scopes have been recognized to ease the design and development of the vehicle. The process of design is depending on various conditions and some of the element subsequently specifications need to be identified. These are types of scope that have been minimize to specific on how the design should be finalize at the end of the project;

i. Able to carry more than one person.

Bicycle is general vehicle that powered by human leg. But the idea is to provide the carriage to be more than bicycle can do. The initial propose is to design a 4person minimum to ride at one time.

- ii. The maximum speed exceed 15km/h
 this is minimum speed to achieve to carry an average of 75 kg person for adult.
 For 4-seater adult the weight achieves is about 300kg. it is enough for a pedal-powered concept to achieve this speed at average.
- iii. Can be steered by simple mechanism

The simpler, the more ease to handle. The speed is not too fast, and the handling is good enough for a speed at only 15km/h.

iv. Optimum size and weight

These factors depend on simple ergonomics of average people size in Malaysia (to be specific). For family usage, the size of people limit to 2 adults and 3 children at one time.

v. Alternative energy and green technology implication

The previous design is using motor to move the vehicle. This project will help in general to reduce green effect of environment. No sound and air pollution will involve. Will support the current agenda of state government of Malacca (to be specific) as a green-technology state 2011.

Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Activities														
Theuvilles														
Problem														
identification														
-Observation														
-Field study														
-Chapter 1														
Literature														
Study														
-Requirement														
-Scope														
-Chapter 2														
Concept														
Design														
-Research														
-specification														
1 st draft														
submission														

Table 1.1 : Semester 1 PSM Gantt-chart

Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Activities														
Embodiment														
Design														
Detail Design														
Analysis														
Prototyping														
Full thesis														
submission														

 Table 1.2 : Semester 2 PSM Gantt-chart

C Universiti Teknikal Malaysia Melaka

CHAPTER 2

LITERATURE REVIEW

2.1 HISTORY OF HUMAN POWERED VEHICLE

There was a debate on who was the first to invent the bicycle or human powered vehicle. Cycling is a 'verb' describing a sport that using paddle to cycle the bicycle. Back in 14th century, pupil ofLeonardo da Vinci, GianGiacamoCaprottiwas said to be the earliest inventor. There was a sketch founded a bicycle a-like. It is confirm that, the sketch itself does not represent the real he was the first bicycle inventor. (Prof. Dr. Lessing H.E., 1997)

17-18th century – in Germany, another 'bicycle' was founded. And this time, the bicycle was wooden made. It's called 'Laufmachine' in Germans, which means 'the running machine' with no pedals and steering installed (Hammer.M, 2005). In 1816 the German re-design it as an improvement to the previous version. This time, a steer system is attached at the front wheel. The inventor is believe named to be Karl von Drais de Sauerbrun.

Figure 2.1: no steering and pedal for the first bicycle founded also known as 'running machine'. (Source: Gun Powder Ma, 2008)

Pedal and steering technology, 18th century – people learned from previous invention. A Scottish, Kirkpatrick MacMillan introduced the more improved design of a bicycle. He was watching the bicycle is moved by kicking their feet to the ground. Then, an idea was brilliantly came at the moment to invent something can move the bicycle without kicking your feet. It was such a big impact on the current design of a bicycle. As a blacksmith, MacMillan design the improvement. (Retrieved from Wikipedia "History of Bicycle")