

KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

A Study on UV Curing Process of Polymeric Materials

Thesis submitted in accordance with the requirements of the Kolej Universiti Teknikal Kebangsaan Malaysia for the Degree of Bachelor of Manufacturing Engineering (Honours) (Manufacturing Process)

By

Ramli Bin Junid

Faculty of Manufacturing Engineering May 2006

KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: A STUDY ON UV CURING PROCESS OF POLYMERIC MATERIALS SESI PENGAJIAN: 2002/2006 **RAMLI BIN JUNID** Saya mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) dengan syarat-syarat kegunaan seperti berikut: Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia. 2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. **Sila tandakan (√) SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(TANDATANGAN PENULIS)

TIDAK TERHAD

TERHAD

(TANDATANGAN PENYELIA)

Cop Rasphof. Dr. MOHD. RAZALI BIN MUHAMAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Alamat Tetap:
NO. 85, KAMPUNG BATU 30,
TITI GANTUNG, 32600, BOTA,
PERAK DARUL RIDZUAN.

Dekan
Fakulti Kejuruteraan Pembuatan
Kolej Universiti Teknikal Kebangsaan Malaysia
Karung Berkunci 1200
75450 Ayer Keroh, Melaka.

Tarikh: 23 MEI 2006 Tarikh: 23 MEI 2006

^{*} Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

Karung Berkunci 1200, Ayer Keroh, 75450 Melaka Tel: 06-233 2421, Faks: 06 233 2414

Email: fkp@kutkm.edu.my

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref): Rujukan Tuan (Your Ref):

25 November 2005

Pustakawan Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia KUTKM, Ayer Keroh MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD

- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN): RAMLI BIN JUNID

TAJUK: "A STUDY ON UV CURING PROCESS OF POLYMERIC MATERIALS"

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk "A Study on UV Curing Process of Polymeric Materials" mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA KERANA ALLAH"

Yang benar,

WAN HASRULNIZZAM WAN MAHMOOD Pensyarah, Fakulti Kejuruteraan Pembuatan (Penyelia Bersama)
☎06-2332122

s.k. - Penyelia Utama: Prof Madya Jasmin Binti Baba

DECLARATION

I hereby, declare this thesis entitled "A Study on UV Curing

Process of Polymeric Materials" is the results of my own research

except as cited in the reference.

Signature

Author's Name

Date

RAMLI BIN JUNID

23 MAY 2006

APPROVAL

This thesis submitted to the Faculty of Manufacturing Engineering of KUTKM and has been accepted as partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Honours) (Manufacturing Process).

Main supervisor

Faculty of Manufacturing Engineering

DEDICATION

For my lovely mother and my family.

ABSTRACT

Polymer material manufacturing techniques have over the years generated tremendous interest in the area of research and development in response to current trends and demands. Bullet proof vests use polymer materials as their constituent in resisting high ballistic impact. One of the section to produce bullet proof vest as personnel protective equipment (PPE) is through a UV curing process to the polymeric materials. Although curing by this technique is relatively slow compared to heat curing, the result is high strength and high impact properties of polymer composites due to crystallinity enhancement of the polymers through cross-linking mechanism. Two types of adhesives materials were used: epoxy and vinyl ester. They were mixed together with different photoinitiator, Bisacyl Phosphine Oxide (BaPO) and Alpha Hydroxyl Ketone Peroxide (AHK). 1.0 and 10.0 per hundred of resin (phr) photoinitiator from the total mixture was added to the adhesive materials. Samples were cured under various times of curing which are 3, 6, 9 and 12 minutes to compare the quality of time exposure under UV light. The mixture of adhesive and photoinitiator was wiped on the fiber layers to act as glue to stick the layers. The laminate was then tested to determine its characteristics such as physical testing like density test, mechanical testing was also performed in order to know its tensile and hardness properties. Morphology study by Scanning Electron Microscope was performed in order to study if proper adhesion has been achieved in each layer. The data obtained was analyzed to determine whether epoxy and vinyl ester give better results.

ACKNOWLEDGEMENT

Alhamdulillah, I would like to express my thankfulness to Allah S.W.T for giving me all the strength that I need in fulfilling and completing my Final Year Project. All the praise and blessing be upon Prophet Muhammad S.A.W. Firstly, I would like to thank those who had been involved whether directly or indirectly in helping me to complete my Final Year Project. It could not have been written and produced without the help of many people.

Special appreciation is goes to my lovely mother and my family who always give support and pray for my success in academic field at all times. My appreciation is also extended to Prof. Dr. Mohd Razali Bin Muhamad who act as my supervisor and Miss Noraiham Binti Mohamad as co-supervisor. Thanks for your supervision. Not forgotten to Mr. Aziz Bin Baharudin and Mr. Jeefferie Bin Abd Razak who have given encouragement and teaching me a lot about the procedure of Final Year Project. I also would like to thank all my classmates who always been listening much to my problems during the period to finish this dissertation. All of your kindness is very much appreciated.

I also would like to express my appreciation to Sri Jentayu Global Sdn. Bhd who ready to provide me equipment like UV lamp and vacuum bagging machine in completing my Final Year Project. Besides, my appreciation is also goes to Ciba Specialty Chemicals (M) Sdn. Bhd. who provide me two types of photoinitiator materials which are Bisacyl Phosphine Oxide (BAPO) and Alpha Hydroxyl Ketone Oxide (AHK). Thanks for all your kindness.

TABLE OF CONTENTS

Abstract	i
Acknowledgement	ii
Table of contents	iii
List of Figures	vii
List of Tables	ix
List of Abbreviations	x
1.0 INTRODUCTION	1
1.1 Problem statement	1
1.2 Research objectives and scope of the project	2
1.3 Importance and benefits of the research	3
2.0 LITERATURE REVIEW	4
2.1 Personnel Protective Equipment (PPE)	4
2.2 Polymeric materials	4
2.2.1 Basic theory of polymeric materials	5
2.2.2 Types of Polymeric materials	6
2.2.2.1 Thermoplastic	6
2.2.2.2 Thermoset	7
2.2.2.2.1 Epoxy	8
2.2.2.2 Vinyl Ester	9
2.2.2.2.3 Benzoyl Peroxide (BAPO)	10
2.2.2.2.4 Alpha Hydroxyl Ketone Oxide (AHK)	11
2.2.2.2.5 Epoxy vs. Vinyl ester	11
2.2.2.3 Elastomer	12
2.3 Basic theory of UV light	13

LIST OF FIGURES

2.1 Chemical Structure of a Simple Epoxy (ethylene oxide)	8
2.2 Chemical Structure of a Typical Epoxy (diglycidyl ether of bisphenol-A)	8
2.3 Chemical Structure of a Typical Epoxy Based Vinyl Ester	9
2.4 Schematic Representation of Vinyl Ester Resin (Uncured)	9
2.5 Schematic Representation of Vinyl Ester Resin (Cured)	10
2.6 Chemical Structure of Phenylbis (2, 4, 6-Timethylbenzoyl)	
- Phosphine Oxide (BAPO)	10
2.7 Chemical Structure of Alpha Hydroxyl Ketone Oxide	11
2.8 Range of Ultraviolet	13
2.9 The UV Formulation	16
2.10 The Three Components of a UV Curing System	25
2.11 Schematic Model for Thermal and UV Curing	30
2.12 Wet and Dry Thickness of UV-Cured Films is the same	31
3.1 UV Cured Laminate Composite	42
3.2 Vacuum Bagging	43
3.3 Ultraviolet Lamp	44
3.4 Sample for Density Test	46
3.5 Sample for Tensile Test	47
3.6 Sample Gripped at UTM Machine	47
3.7 Hardness Test Performed to the UV Cured Laminate	49
3.8 Scanning Electron Microscopes	50
3.9 Flow Chart of the Experimental Work	52
4.1 Density at Different Amount of Photoinitiator	54
4.2 Density of Samples at Various Curing Time	57
4.3 Tensile Strength of Samples at Different Amount of Photoinitiator	60

	2.3.1 UV light range.	13
	2.3.1.1 UV A range	14
	2.3.1.2 UVB range	14
	2.3.1.3 UV C range	14
	2.3.1.4 Vacuum UV range	14
	2.3.2 UV light chemical formulation	14
	2.3.2.1 Free radical formulation	15
	2.3.2.2 Cationic formulation	15
2.4	4 Fundamental of UV curing	16
	2.4.1 UV curing at a glance	16
	2.4.2 UV curing adhesive	18
	2.4.2.1 Types of adhesives	18
	2.4.2.1.1 Epoxy material	19
	2.4.2.1.2 Acrylic material	19
	2.4.3 Important factors in the UV curing process	20
	2.4.3.1 Spectral absorbance	20
	2.4.3.2 Reflectance and scattering	20
	2.4.3.3 Optical density	21
	2.4.3.4 Diffusivity	21
	2.4.3.5 Infrared absorptivity	21
	2.4.4 Technology of UV curing	21
	2.4.5 Applications on UV and its significance	22
	2.4.5.1 Significance of spectral absorbance and wavelength	22
2.5	Details of UV curing process	23
	2.5.1 Components of UV curing	23
	2.5.2 The photochemistry	24
	2.5.3 The UV lamp system	24
	2.5.3.1 UV irradiance	24
	2.5.3.2 Spectral distribution (wavelength) of UV	24
	2 5 3 3 HV dose	25

2.5.3.4 Infrared radiation	26
2.5.4 Categories of UV curing process	27
2.5.4.1 Linear UV curing	27
2.5.4.2 Flood (area) UV curing	28
2.5.4.2.1 Static exposure	28
2.5.4.2.2 Dynamic exposure	28
2.5.4.3 Spot curing	29
2.5.5 Thermal curing over UV curing	29
2.5.6 Catalyst curing over UV curing	31
2.5.7 Advantages or benefits of UV curing process	34
3.0 EXPERIMENTAL WORK	35
3.1 Raw material	35
3.2 Polymeric resins	35
3.2.1 Vinyl Ester	36
3.2.2 Epoxy	36
3.3 Photoinitiator material	37
3.3.1 BAPO	37
3.3.2 AHK	38
3.4 Processing method and samples preparation	38
3.4.1 Mixing and homogenizing the mixture	41
3.4.2 Wipe the mixture on glass	41
3.4.3 Vacuum bagging	
3.4.4 UV curing under UV light	
3.5 Testing method	
3.5.1 Density test	45
3.5.2 Tensile test	
3.5.3 Hardness test	
3.5.4 Morphology study by Scanning Electron Microscope	50
3 6 Flow chart of the experimental work	

4.0 RESULTS AND DISCUSSIONS	53
4.1 Physical Testing	53
4.1.1 The effect of Photoinitiator	53
4.1.2 The effect with Variation of Curing Time	57
4.2 Mechanical Testing	59
4.2.1 Tensile Test.	59
4.2.1.1 The effect of Photoinitiator	59
4.2.1.2 The effect with Variation of Curing Time	62
4.2.2 Hardness Test	66
4.2.2.1 The effect of Photoinitiator	66
4.2.2.2 The effect with Variation of Curing Time	69
4.3 Morphology Analysis	71
5.0 CONCLUSIONS AND RECOMMENDATIONS	74
5.1 Conclusions	74
5.2 Recommendations	75
REFERENCES	76
APPENDICES	
A Table 1. Passarch Project Schedule	70

4.4 Tensile Strength of Samples at Different Curing Time	63
4.5 Hardness of Samples at Different Amount of Photoinitiator	66
4.6 Hardness of Samples at Different Curing Time	70
4.7: Micrograph of Sample A1 to B4.	72
4.8: Micrograph of Sample C1 to D2.	73

LIST OF TABLES

2.1 Techniques to Manage the Infrared Radiation Energy	27
2.2 Comparison of UV Curing versus Catalyst Curing Technology	33
3.1 Solubility of BaPO and AHK in Monomer Solutions (g/100g solution)	38
3.2 Details about the Sample	40
3.3 The Calculation for Weight of Photoinitiator Materials in phr	42
4.1 Density Data at Different Amount of Photoinitiator	54
4.2 Density Data at Various Curing Time.	58
4.3 Tensile Strength Data of Samples at Different Amount of Photoinitiator	60
4.4 Tensile Strength Data of Samples at Different Curing Time	64
4.5 Hardness Data of Samples at Different Amount of Photoinitiator	67
4.6 Hardness Data of Samples at Different Curing Time	70

LIST OF ABBREVIATIONS

ACGIH - American Council of Government and Industrial Hygienists

AHK - Alpha hydroxyl ketone oxide

ASTM - American Standard Test Method

BAPO - Phenylbis (2, 4, 6-frmethylbeirzoyl) - Phosphine oxide

IR - Infrared Radiant

JIS - Japanese International Standard

MSDS - Material Safety Data Sheet

NIJ - National Institute of Justice

NIOSH - National Institute for Occupational Safety and Health

Phr - Per hundred of resin

PPE - Personal Protective Equipment

SEM - Scanning Electron Microscope

UTM - Universal Testing Machine

UV - Ultraviolet

VOC - Volatile Organic Component

CHAPTER 1 INTRODUCTION

1.1 Problem statement

The curing process of polymeric material by using ultraviolet light has played an important role in polymer material processing since the process is more advantageous than heat cure. One of the applications of the curing process of polymeric material by ultraviolet light can be seen in producing personal protective equipment such as bullet proof vest.

This research is the first stage in producing the bullet proof vest. For this research the main materials that were used were epoxy and vinyl ester and were categorized as thermoset polymer. The matrix was added with photoinitiator materials that act as the energy absorber to start the process of curing. In addition, the curing time has been varied to 3, 6, 9 and 12 minutes. The characteristic of the material cured was analyzed and studied under various analysis methods such as density test, tensile test, hardness test and morphology study by using Scanning Electron Microscope.

Samples were tested under various type of mechanical testing in order to study their response to the applied stress. After the testing process has been done, the data was evaluated and discussed further. This project is hoped can bring a new technique in producing bullet proof vest with better quality and lower cost in its production.

1.2 Research objectives and scope of the project

The objective of this research assesses the ability of the UV light to convert the material to become harden or cure and the properties of the cured material were studied. The objectives of this research are stated as below:

- To investigate the influence of ultraviolet light in the curing process of thermosetting polymers.
- To study the parameter involve in UV curing process of polymeric materials and affect to the properties of polymer materials.
- iii. To characterize the effects of epoxy or vinyl ester resin after cured by UV light and the impact of using photoinitiator or accelerator.
- iv. To define the effectiveness of the epoxy or vinyl ester resin as a UV cured laminate in application for the bullet proof vest.
- To investigate the contribution of photoinitiator materials in accelerates the process of curing under UV light.

The scope of the research is to investigate a new technique for producing polymers laminate composites that are excellent in resisting high ballistic impact in the first stage of producing bullet proof vest. Currently, vinyl ester was used as adhesive material to stick the glass laminate. In this research epoxy will be chosen to make comparison between the effectiveness of these two types adhesive materials. In addition, two types of photoinitiator or accelerator was used in this research. Thus, the performance of each adhesive material, time of curing and presence of photoinitiator to stick the glass laminate will be monitored.

1.3 Importance and benefits of the research

This research has its own importance and benefits instead of the study. There are:

- Fundamental study can be provided in order to pursue more advanced and detailed study regarding the process of UV curing in application process of bullet proof vest.
- Properties of existing glass laminate composite for bullet proof vest in terms of mechanical properties and durability can be improved. Thus, the quality can be upgraded.
- Novel method of effective curing process can be developed and introduced. These can benefits to all sectors.
- Procurement of new equipment related to this project especially regarding to the UV curing process can be equipped and will be useful primarily to the faculty's laboratory.
- This project is able to contribute to domestic organizational linkages with other research institutions/universities.
- This project will be beneficial to the local composites manufacturers in terms of collaboration in research and technology exchange.

CHAPTER 2 LITERATURE REVIEW

2.1 Personnel Protective Equipment (PPE)

Personal Protective Equipment (PPE) includes all clothing and other work accessories designed to create a barrier against workplace hazards. Examples include safety goggles, blast shields, hard hats, hearing protectors, gloves, respirators, aprons, and work boots. For army, its include bullet proof vest, helmet, boot and etc. For this research, the main objective is to develop a bullet proof vest for army where the material that will be used is epoxy resin and polyvinyl ester. The epoxy resin will be cured by UV light and the output characteristics will be studied and analyzed.

2.2 Polymeric materials

Polymers play an enormously important role in modern society. The significance of these materials is often taken for granted, yet polymers are fundamental to most aspects of modern life such as building, communication, signs, housewares, textiles, medical devices, foams, paints, safety shield, toys, appliance, lenses, gears, electronic and electrical product, transportation, clothing and packaging. Thus, an understanding of the structures and properties of polymeric materials is vital.

Polymers are large molecules consisting of a large number of small component molecules. In fact, the name polymers derives from the Greek 'polys' meaning 'many' and 'meros' meaning 'part'. Many polymers are synthesized from their constituent monomers via a polymerization process. Most commercial polymers are based on covalent compound of carbon, although certain synthetic polymers may also be based on inorganic atoms such as silicon (Stuart, 2002).

2.2.1 Basic theory of polymeric materials

Polymers can display a range of different structures. In the simplest case, polymers posses have a linear structure. However, polymers can also be branched, depending on the method of polymerization. They may also display a cross-linked structure. Some more unusual polymer structures include central unit, ladder polymers, which consist of repeating ring structures, and dendrimers, which show a star like structure with branching. These different sorts of microstructures have an affect on the properties of the polymer. Polymers are often commonly referred to as 'plastics'. However this is somewhat of a misnomer. The term 'plastic' refers to one class of polymers known as thermoplastics. Polymers are also characterized as thermosets and elastomer (Stuart, 2002).

Because of their unique and diverse properties, polymers have increasingly replaced the applications of metallic components such as automobiles, civilian and military aircraft, sporting goods, toys, appliances, and office equipment. These substitutions reflect the advantages of polymers in terms of the following characteristics:

- i. Corrosion resistance and resistance to chemicals
- ii. Low electrical and thermal conductivity
- iii. Low density
- iv. High strength to weight ratio, particularly when reinforced

- v. Noise reduction
- vi. Wide choice of colors and transparencies
- vii. Ease of manufacturing and complexity of design possibilities
- viii. Relatively low cost
- ix. Others that may or may not be desirable, depending on the application, such as low strength and stiffness, high coefficient of thermal expansion, low useful temperature range, and less dimensional stability in service over a period of time.

The word polymer was first used in 1866. The earliest polymers were made of natural organic materials from animal and vegetable products where cellulose is the most common example (Kalpakjian, and Schmid, 2001).

2.2.2 Types of Polymeric materials

There are three types of polymers which are thermoplastics, thermoset and elastomers. All these types are discussed as follows.

2.2.2.1 Thermoplastic

Polymers in this category show a wide range of different properties, but a simple definition is to describe these as polymers that melt when heated and resolidify when cooled. Thermoplastics tend to be made up of linear or lightly branched molecules, as such structures enable the polymer chains enough freedom of movement to change form as a function of temperature. Thermoplastics are polymers that require heat to make them processable. After cooling, materials will retain their shape. In addition, these polymers may be reheated and reformed, often without significant changes to their properties. Many thermoplastics contain long main chains consisting of covalently bonded carbon atoms. Several types of thermoplastics are including polyethylene,

polypropylene, polyvinylchloride, polystyrene, polymethylmethacrylate, polyamide and etc (Stuart, 2002).

2.2.2.2 Thermoset

Thermoset are polymers that do not melt when heated, but decompose irreversibly at high temperatures. Thermosets are crosslink, with the restrictive structure preventing melting behavior. Thermosets have a networked (crosslinked) structure types. Such a structure may be formed by heating or via a chemical reaction. Thermosets tend to posses excellent thermal stability and rigidity. Several types of thermosets are including phenolic resins, epoxy resins, amino resins, polyester resins, and polyurethanes resin (Stuart, 2002).

Thermosetting plastics generally possess better mechanical, thermal, and chemical properties, electrical resistance, and dimensional stability than do thermoplastics. A typical thermoset is phenolic, which is a product of the reaction between phenol and formaldehyde. Common products made from this polymer are the handles and knobs on cooking pots and pans and components of light switches and outlets. The polymerization process for thermosets generally takes place in two stages. The first occurs at the chemical plant, where the molecules are partially polymerized into linear chains. The second stage occurs at the parts producing plant, where crosslinking is completed under heat and pressure during the molding and shaping of the part. Thermosetting polymers do not have a sharply defined glass temperature. Because of the nature of the bonds, the strength and hardness of a thermoset are, unlike those of thermoplastics, not affected by temperature or by rate of deformation. If the temperature is increased sufficiently, the thermosetting polymer instead begins to burn up, degrade, and char (Kalpakjian, and Schmid, 2001).

In this research, the materials that will be used for cured by UV light are epoxy and vinyl ester. The photoinitiator that will be used are benzoyl peroxide (BAPO) and alpha hydroxyl ketone peroxide (AHK). Details about the material are described as follows.

2.2.2.2.1 Epoxy

Epoxy resins, like polyesters, can be formulated to give a wide range of properties. When compared with polyesters, epoxies generally have better resistance to alkalis and solvents but slightly poorer weathering resistance. Their electrical properties, wear resistance and thermal stability are excellent. Epoxies, when reinforced with aramid or carbon fibres, are the standard matrix for high performance aerospace applications. Fibre reinforced epoxies are used in the sport and leisure industry, and they have also replaced reciprocating metal components, particularly in the weaving industry.

Reinforced epoxies can be processed by all the normal thermoset techniques. Fibre, either in the form of continuous filaments or woven fabric that has been pre impregnated with resin (prepregs) can be processed by automated tape laying, vacuum bag moulding or autoclave moulding. Prepregs are usually produced by passing the fibres either through a solvent/resin mix, with subsequent solvent removal, or a hot melt of resin. In both cases, the resin contains the necessary hardeners and catalysts. Though more expensive, prepregs tend to give more reliable results when compared with hand impregnation, with a greater degree of control over properties such as fibre volume fraction and matrix porosity. One disadvantage with epoxy prepregs is their limited shelf life, even when stored at 25°C. They also require elevated temperatures to cure (Charles and Edward, 2003).

Figure 2.1: Chemical structure of a simple epoxy (ethylene oxide).

$$CH_2$$
 CH CH_2 O CH_3 O CH_2 CH CH_2 O CH_3 O

Figure 2.2: Chemical structure of a typical epoxy (diglycidyl ether of bisphenol-A).