PERFORMANCE ANALYSIS OF ZIGBEE-BASED WIRELESS VIRAL ADVERTISEMENT SYSTEM FOR LAND PUBLIC TRANSPORT

ABDUL HAFIZ BIN ABD HALIN

A report submitted in partial fulfillment of the requirement for the degree of Bachelor of Mechatronic Engineering

Faculty of Electrical Engineering

UNIVERSITY TEKNIKAL MALAYSIA MELAKA

WIRELESS V	at this report entitle "PERFORMANCE ANALYSIS OF ZIGBEE-BASED /IRAL ADVERTISEMENT SYSTEM FOR LAND PUBLIC TRANSPORT of my own research except as cited in the references. The report has not been
accepted for	r any degree and is not concurrently submitted in candidature of any degree
Signature	:
Name	:
Date	
Date	•

To my beloved mother and father

ACKNOWLEDGEMENT

The special thank goes to my supervisor, Mr. Nik Syahrim bin Nik Anwar. The supervision and support that he gave help in the progression and smoothness of the project. His advice is most appreciate.

My grateful thank also to our group members, Muhammad Subhan, Ahmad Nordin, Muhammad Firdaus for their effort and cooperation during process to complete the project. Their passion deserves to be appreciate.

Last but not least, gratitude to my parents. Without their, I won't be here. Their encouragement and support make me further the study to upper level.

ABSTRACT

The normal banner cannot be updated daily. So it is not a real time advertisement. The proposed can transfer advertisement from shop to the bus and the advertise it at bus stop. The system will be analyze based on performance parameter of maximum data transfer versus time. The objective of this research is to analysis performance of zigbee-based wireless viral advertisement system for land public transport. Data for the needed, which is maximum data transfer can determine by formula speed of data transfer multiply with times. Times for all the data to transfer taken by stopwatch. Speed data transfer as stated in zigbee module. Wireless such as GSM, HSDPA, Bluetooth and etc are improving as time move. Needed of wireless devices are common for the users. As for typical advertisement, usage of banner still in use even though it is not practically reliable. By using the system, advertisement can be transfer from a shop to the bus and then the bus stop. Based from datasheet Zigbee pro, it radius can reach 1.5km for open space and 100m for indoor usage. The real data maybe slightly different because of some factor (exp: obstacle, humidity and etc). Uses of wireless (Zigbee) in advertisement can overcome barrier of space and time that are happen now. The system also can provide real-time advertisement. The prototype expected to function properly and can be use to analyze performance parameter (data transfer versus time).

TABLE OF CONTENTS

CHAPTER	TITLE	E PA	G E
	ACKNOWLEDGE	,	V
	ABSTRACT	7	VI
	TABLE OF CONTENTS	7	VII
	LIST OF TABLES	I	X
	LIST OF FIGURES		X
	LIST OF APPENDICES	Х	ΙΙ
1	INTRODUCTION		1
	1.1 Problem statement		1
	1.2 Objective		1
	1.3 K-chart		2
	1.4 Scope		3
2	LITERATURE REVIEW		4
	2.1 Introduction		4
	2.2.1 Advertising		5
	2.2 Comparison		7
	2.3 Discussion	1	10
3	METHODOLOGY	1	11
	3.1 Overview	1	11
	3.2 Component used	1	13

	3.2.1 PIC16F877A	13
	3.2.2 Xbee Pro/Xbee	14
	3.2.3 LCD 20x4	15
	3.3 Software used	16
	3.3.1 MicroC	16
	3.3.2 PICkit 2 programmer	16
	3.3.3 Visual Basic	16
	3.4 Experiment setup	18
	3.4.1 Range test	18
	3.4.2 Obstacle test	23
4	RESULT AND DISCUSSION	25
	4.1 System Elements	25
	4.1.1 Hardware	25
	4.1.2 Hardware Configuration	28
	4.1.3 Graphical User Interface (GUI)	29
	4.2 Experiment Result (Xbee Pro)	31
	4.2.1 Range Test	31
	4.2.2 Obstacle Test	37
	4.3 Experiment Result (Xbee)	41
	4.3.1 Range Test	41
	4.3.2 Obstacle Test	46
	4.4 Experiment Outcome	50
5	CONCLUSION AND RECOMMENDATION	51
	5.1 Conclusion	51
	5.2 Recommendation	52
REFERENCES	S	53
APPENDICES		54

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between 3 journal and proposed project	7
3.1	PIC16F877A Features	13
3.2	Comparison Between Xbee and Xbee Pro	14
3.2	Table for data recorded	21
3.3	Obstacle data collect	24
4.1	Part description for Figure 4.3 & 4.4	27
4.2	Addresses assign for each point	28
4.3	Range Test Xbee Pro for elevation 0.5m	32
4.4	Range Test Xbee Pro for elevation 1.5m	33
4.5	Range Test Xbee Pro for elevation 2.5m	34
4.6	Obstacle Test Xbee Pro for elevation 0.5m	37
4.7	Obstacle Test Xbee Pro for elevation 1.5m	38
4.8	Obstacle Test Xbee Pro for elevation 2.5m	39
4.9	Range Test Xbee	41
4.10	Obstacle Test Xbee	46

LIST OF FIGURES

Figure	Title	Page
1.1	K-chart	2
2.1	Types of Advertising	6
3.1	Basic Concept of the system	11
3.2	Flow chart for project sequences	12
3.3	Microcontroller	13
3.4	Xbee Pro	15
3.5	LCD 20x4	15
3.6	Visual Basic	16
3.7	Flow for Experiment	19
3.8	Transmit page X-CTU	20
3.9	Receive page X-CTU	20
3.10	Line of sight transmitter and receiver setup	21
3.11	Elevation	22
3.12	Experimental Setup obstacle test	23
4.1	Schematic Circuit for PIC	25
4.2	System schematic (Proteus)	26
4.3	Hardware setup	26
4.4	Finished product	27
4.5	Configuration for Hardware	28
4.6	(a) first page, (b)second page-key in needed data	29
4.7	Receive advertisement	30
4.8	Distribution of data	31
4.9	Graph data size versus distance Xbee Pro	35

4.10	Range detection Xbee Pro	36
4.11	Graph Data size versus obstacle Xbee Pro	40
4.12	Graph Range Test (Xbee)	44
4.13	Range detection Xbee	45
4 14	Graph data size versus obstacle Xbee	49

LIST OF APPENDICES

Appendices	Title	Page
A	Coding for Visual Basic at shopping complex	54
В	Coding for Visual Basic at Bus Stop	57
C	Coding MicroC for PIC	58

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The advertisement especially using banners are always hanged for a long period. New advertisement can't be hang if the old advertisement is still there. Usually, spaces for hang the advertisement are limited at certain area only. Plus, the advertisement is in not real time. Normal banner can't be updated daily because lack of space. Paper based banner are also not good for the environment. It will be dump after use. These actions contribute to other environmental issues. Electronic banners can reduce usage of papers thus reducing the need for forest destruction.

1.2 Objective

There are some objective drawn for this project

- 1) To design a real-time advertisement
- 2) To expand area of the advertisement so it is not fix to certain area only
- 3) To make the advertisement show are up to date.
- 4) To study the performance parameter of maximum data transfer versus distance.

1.3 K-chart

K-chart is a systematic organizing for research. In this K-chart show the scope, methodology, and the result presented.

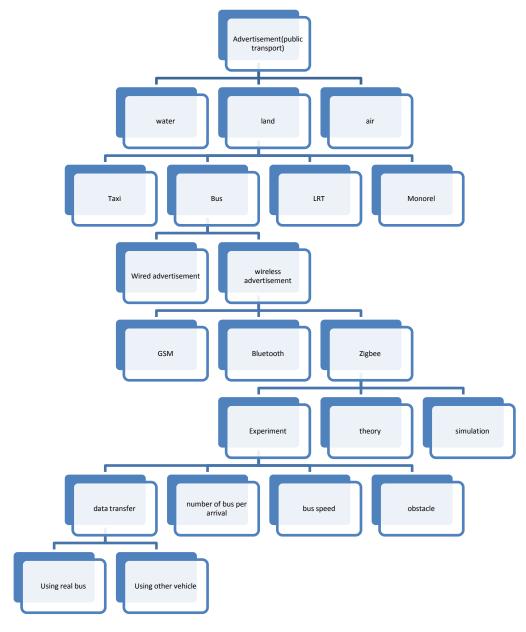


Figure 1.1 K-chart

1.4 Scope

This project only supports limited number for bus arrival. Range of zigbee detection may varied by the obstacle. Datasheet show the radius of zigbee at open field about 1.5 km (line of sight). Obstacle can disturb the radio frequency as data transfer using radio frequency, energy of transmission decrease. Plus, radio frequency did not has penetration power line gamma or x-rays [8]. Testing will be not be done by using real bus.

CHAPTER 2

Literature Review

2.1 Introduction

In this section, wireless protocol and related protocol for transmit the data will discussed. The main purpose for this research to find the beast communication medium for wireless viral advertisement. There are certain medium that are in consideration to be chosen. There are Zigbee, GPS-based system, digital signal network and cellular network.

Zigbee is a communication medium which use radio frequency and use for short range transmission. Zigbee not bound to coverage area. As long as there are Zigbee device, it can transfer and receive. Zigbee offer other alternatives to the place where there are no coverage of 3G, WiMAX, or other long range wireless technology. The potential of Zigbee still in experimental stage. The fact that Zigbee is a low power device and use for short range is well known. Zigbee always had been use for home application [6].

3G, WLAN and other long range wireless technologies are more convenient for set a system with high coverage but the long range wireless system has their weaknesses. The long range wireless system consumes larger power than short range wireless system. Problem for this system is need to set up a tower for coverage radius. It needs lot of money to set up a 3G area. Even though the cost is expensive, the coverage area is longer than other system.

2.2.1 Advertising

Advertising is a method to boost up the sales for the product. It also used to build a brand identity and introduce new product or service to the customer. The importance of advertising makes large company consider a lot of money toward their advertising budget. There are several reason for advertising [7]:

- 1) Increasing the sales of the product or service
- 2) Creating and maintaining a brand image
- 3) Introduction of new product
- 4) Increasing buzz-value of the brand or the company
- 5) Communicating a change in the existing product line.

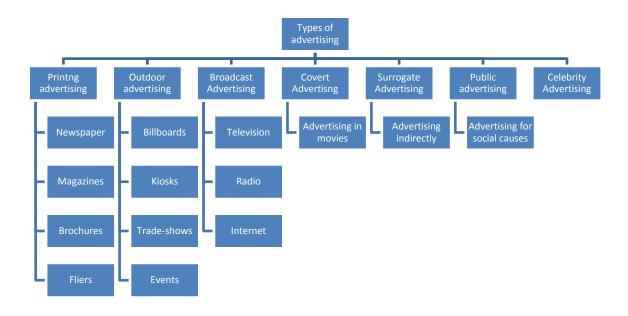
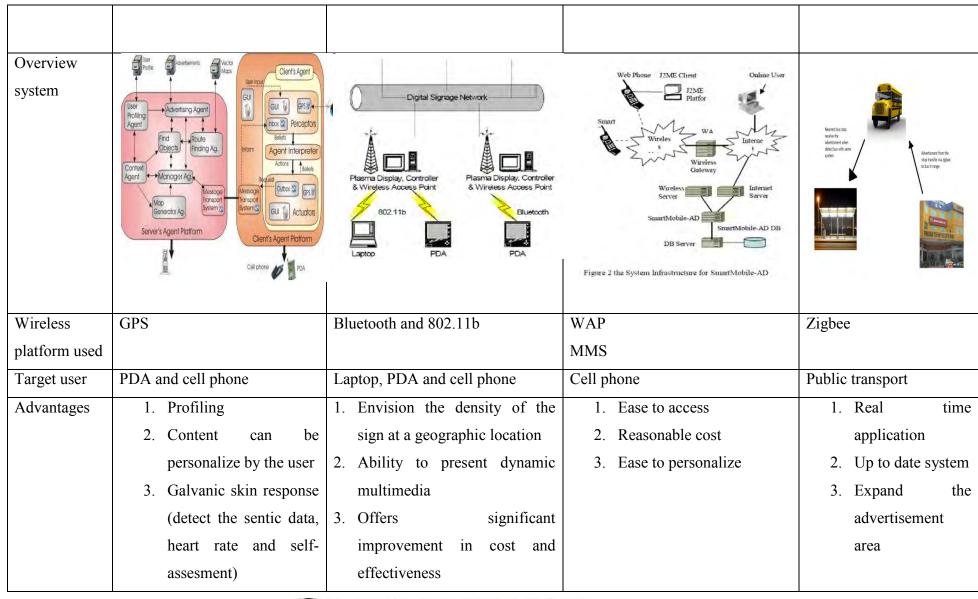


Figure 2.1 Types of Advertising

Figure 2.1 shows types of advertisement that available in our community. This project focuses on the outdoor advertising. The outdoor advertising must be able to capture people attention.


2.2 Comparison

For this paper, the three different journal compare with the project. Even though the medium of the transmission of each case are different but the fundamental of advertisement is still same. All the application focus on how to improve advertisement system. Some of the project are more superior than this project, but the usage of Zigbee chose because it is cheap and can be use for a long time.

Table 2.1 Comparison between 3 journal and the proposed project [2][3][4]

	Ad-me	Digital Signal Network	SmartMobile-Ad	Zigbee based (this
				project)
Year of	2004	2004	-	-
publish				
Description	Activation of GPS will detect	Data transfer using data using a	Advertiser	Data (advertisement)
	the position of the user. It will	network (eg: fiber optic)	Ad Template Define Ad Target	from the shop will be
	show the advertisement for the		Select Template Enter Ad	transfer to the bus in
	nearest shop		Ad Space List	range and then to the bus
			Subset Space Submit Ad	stand which is the bus
			Ad Schedule List	arrive or pass by.
			Select Schedule Figure 7 the Workflow for Advertisers	

		4. Offers near-real time		
		Low cost in installing and		
		distribution of digital		
		advertising		
Disadvantage	1. System operates in an	1. Viewers only receive the	1. Limited number of user	1. Only respond for
S	outdoor environment	information that is	2. Slow speed download	zigbee to zigbee
	2. While roaming through	presented on the sign	3. Broad technology	communication
	different cells,	2. Viewers only have access	spectrum	2. Range for transfer
	misinformation,,	to the information while		data limited in
	malicious downloads,	they are viewing the sign.		zigbee detection
	or denial of service	3. Viewers cannot easily		range
	may occur	respond to the advertiser at		
	3. Issues surround the	the time viewer is most		
	collecting of personal	likely to respond.		
	preference and user			
	geographic location.			

2.3 Discussion

This part will discuss about Table 2.1, the different between Ad-me, Digital signal network, SmartMobile Ad and Zigbee based system. Firstly, about the medium used to transfer information. For Ad-me, it use GPS to detect the position of user and then the nearest point of interest for the user will be shown. While for the Digital signal network, the information transfer by using network such as Bluetooth or 802.11b method. 802.11b is a method or protocol use for wifi to transmit data. SmartMobile-Ad utilizes MMS and WAP to transmit. For Zigbee, it use radio frequency as a medium to transfer. Ad-me, Digital signal network and SmartMobile-Ad need a network to transfer. It means they need a telecommunication provider to use the application. On the other hand, Zigbee only need to use the module to transmit and receive. Based on these information, Zigbee are more flexible compare to others.

Focus of this project is to public transport but Ad-me and other system except Zigbee design either for phone users, PDA users or internet users. The target user for this project and the review system do not match. The reason why chose ad-me and other journal not because of its target users but the fact that the system use to advertise. Ad-Me, SmartMobile-Ad and digital signal network categorized in broadcast advertisement while Zigbee system is outdoor advertisement.

CHAPTER 3

METHODOLOGY

3.1 OVERVIEW

Figure 3.1 is basic concept of the project. It involve receive and transmit data between shop, bus and bus stand.

Figure 3.1 Basic concept of the system

For this project, there are several steps taken before the project end. Below is sequential need to do before the project complete.

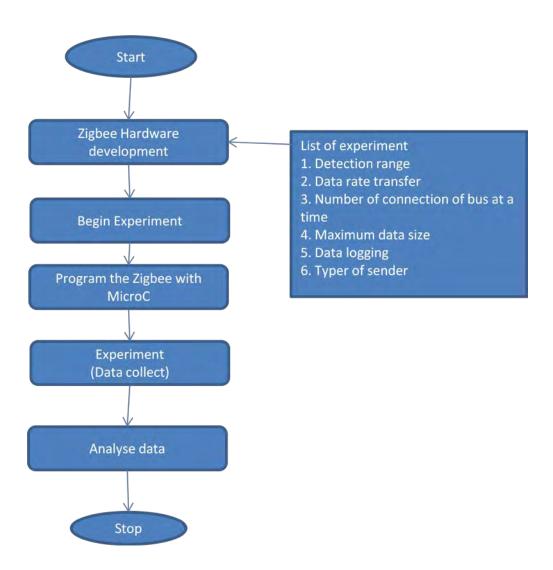


Figure 3.2 Flow chart for project sequences

Figure 3.2 is flow chart of the whole project. Start from basic which is software and hardware development to the experiment. There are 7 types of experiment

3.2 COMPONENT USED

3.2.1 PIC 16F877A

Pic16F877A has some distingue characteristic. The characteristic of PIC16F877A shown in Table 3.1.

Table 3.1 PIC16F877A Features [9]

Features	PIC16F877A
Operating frequency	DC-20MHz
Resets (and delay)	POR,BOR(PWRT,OST)
Flash Program memory	8k
Data memory	368
EEPROM Data Memory (bytes)	256
Interrupts	15
I/O Ports	Ports A,B,C,D,E
Timers	3
Capture/Compare/PWM modules	2
Serial communications	MSSP,USART
Parallel communications	PSP
10-bits Analog-to-Digital module	8 input channels
Analog comparator	2
Instruction set	35 instructions
Packages	40-pin PDIP
	44-pin PLCC
	44-pin TQFP
	44-pin QFN

Figure 3.3: microcontroller