DESIGN AND DEVELOP A SMART AUTO FEMASI SYSTEM (FEEDER MACHINE WITH SOLAR INTEGRATE & INTERFACE WITH GSM) Mohd Adzhar Bin Saiman Bachelor of Electrical Engineering (Power Electronic and Drive) June 2012

"I hereby declare that I have read through this report entitle "Design and Develop a Smart Auto FEMASI (Feeder Machine with Solar Integrate and Interface with GSM) System" and found that it has comply the partial fulfillment for awarding the Degree of Bachelor of Electrical Engineering (Power Electronic and Drive)"

> Signature: Supervisor''s Name: EN. MUSA BIN YUSUP LADA Date:

DESIGN AND DEVELOP A SMART AUTO FEMASI SYSTEM (FEEDER MACHINE WITH SOLAR INTEGRATE & INTERFACE WITH GSM)

MOHD ADZHAR BIN SAIMAN

This Report Is Submitted In Partial Fulfillment of Requirement for the Degree of Bachelor in Electrical Engineering (Power Electronic and Drive)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2012

"I declare that this report entitle "*Design and Develop a Smart Auto FEMASI System (Feeder Machine with Solar Integrate &Interface with GSM)*" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature : Name : MOHD ADZHAR BIN SAIMAN Date :

ACKNOWLEDGEMENT

First and foremost, I would like to express the deepest thank and appreciation to my beloved supervisor En. Musa bin Yusup Lada for the valuable guidance and advice. Without his guidance and persistent help this final year project would not have been possible. He inspired me greatly to work in this final year project. Besides, I would like to thank the Faculty of Electrical Engineering for providing me with a good environment and facilities to complete this final year project. Finally, an honorable mention goes to my family and friends for their understandings and supports on me in completing this final report. Without helps of the particular that mentioned above, I would face many difficulties while doing this final year project.

ABSTRACT

The construction of this invention is intended to produce a machine that automatically feed fish using PIC 16F877A, Microcontroller. It is a main controller which is placed at the pond area. The objective is to solve problems that occur as factors fish feeding that are not systematically, reduce the surplus of fish food in the pond and create a tool that is more systematic and more practical. Development of this project involves electronic, electrical and mechanical. To control the setting time, electronic devices such as timers and the microcontroller is used. This device allows the feeding to be more systematic base on time that has been set. Surplus food can also be reduced with the use of electronic devices where the food is given in the pond based on the time setting. By interface with the new technology such as GSM more give this project look unique. Several other methods have been used as reference such as previous studies and also the fish food feeder machines in the market and that have been produced by certain individuals. The results of testing conducted this project has been functioning well and has achieved the objectives of the construction of this invention. With the development of this invention indirectly can become an innovation to the construction of landscape in the future.

ABSTRAK

Pembinaan ciptaan ini adalah bertujuan untuk menghasilkan satu mesin automatic dalam memberi ikan makan dengan menggunakan PIC16F877A Mikrokawalan. Dengan menngunakkan komponen ini dapat memastikan ikan ternakkan dapat makan dengan secukupnya dan membesar dengan sihat. Dimana dalam komponen ini telah diprogramkan waktu dan jadual ikan makan. Tujuannya adalah untuk mengatasi memberi makan ikan secara tidak sistematik dan mewujudkan salu alat yang lebih sistematik dan praktikal. Pembangunan projek ini melibatkan kerja-kerja elektronik, elektrik dan juda mekanikal. Bagi mengawal masa penetapan, alat-alat electronic seperti mikrokawalan telah digunakan. Penggabungan dengan penggunaan teknologi baru seperti GSM dapat membuatkan mesin ini lebih unik. Beberapa kaedah telah digunakn sebagi rujukan seperti kajian sebelumnya dan juga mesin pemberi makan ikan di dalam pasaran yang telah dihasilkan oleh individu tertentu. Keputusan projek ini telah berfungsi dengan baik dan telah mencapai objektif pembinaan mesin ini. Dengan pembangunan reka cipta ini secara tidak langsung boleh menjadi inovasi untuk pembinaan landskap pada masa akan datang.

TABLE OF CONTENT

CHAPTER	TITI	E		PAGE
	ACK	NOWLEDG	EMENT	v
	ABS	TRACT		vi
	ТАВ	LE OF CON	TENT	viii
	LIST	COF TABLE	s	xi
	LIST	OF FIGURI	ES	xii
1	INT	RODUCTIO	N	
	1.1	Introductio	n	1
	1.2	Problems S	tatement	2
	1.3	Objective		2
	1.4	Scope		3
2	LITE	RATURE RE	VIEW	
	2.1	Introduction	1	4
	2.2	Aquaculture	2	4
	2.3	Type of orn	amental pond	4
		2.3.1	Mud Pond	5
		2.3.2	Fiberglass Pond	5
		2.3.3	Concrete Pond	6

2.4	Type of	f Ornan	nental Fish	7
2.5	Fish Fo	od and	Feeding	8
2.6	Compe	ting Pro	oducts	10
	2.6.1	Auton	natic Fish Feeder	10
	2.6.2	Auton	natic Fish Feeder with LCD Display	11
	2.6.3	Digita	l Automatic Aquarium Fish Feeder Food	12
2.7	Туре	ofpanel	l solar	13
	2 .7.1	Mono	crystalline	13
	2.7.2	Poly c	rystalline	14
	2.7.3	Amor	phous	15
2.8	Electri	ical Des	ign	16
	2.8.1	Comp	onent Selection	17
	2.8.	1.1	LCD Display	17
	2.8.	1.2	Microcontroller (PIC)	18
	2.8.1	.3	Global System for Mobile Communication	19
	2.8.1	.4	Interface Circuit to GSM	20
	2.8.1	.5	Level Sensor	21
2.9	Summ	nary of l	Literature Review	22

3

METHODOLOGY

3.1	Introdu	uction	23
3.2	Flowel	hart of Methodology	24
3.3	Hardw	vare	25
	3.3.1	Power Supply Circuit	26
	3.3.2	Interface GSM	27
	3.3.3	Clock Oscillating	28
	3.3.4	Sensor for Port Input to Microcontroller	29
	3.3.5	Drive Circuit for Relay	30
	3.3.6	Liquid Crystal Display (LCD)	31
	3.3.7	Circuit for Level Sensor (Infrared LED)	32
	3.3.8	Solar Panel and Charge Controller	33
	3.3.9	Microcontroller Circuit	35
	3.3.10	Buzzer for Output of Microcontroller	36
3.4	Softwa	are	37
	3.4.1	MP Lab C Compiler	37
	3.4.2	C language	37
	3.4.3	The structure of C Program	38
	3.4.4	Short Message Commands	40
3.5	Softwa	are Design Concept	42
	3.5.1	Flow Chart of the Main Programming	43

3.6	The M	lain Programming Coding	44
	3.6.1	For Message 1	47
	3.6.2	For Message 2	49
	3.6.3	Send SMS Command	51

4 DISCUSSION RESULT AND ANALYSIS

4.1	Introduction	53
4.2	Power Supply Circuit Analysis	53
	4.2.1 Result	54
	4.2.2 Discussion	54
4.3	Main controller circuit analysis	55
	4.3.1 Results and Discussion	55
4.4	Flowchart Operation	56
4.3	Discussion of Operation Circuit	57
4.4	Experiment Test Result	58
	4.4.1 Waveform from Solar Panel Terminal	58
	4.4.2 Waveform from GET MOSFET Terminal	58
	4.4.3 Waveform from Battery Terminal	59
4.5	Analysis Data during Charging Battery of	
	Solar Charge Controller	60
4.6	Analysis on Result	61

4.7	Data C	Collection for Voltage and Current	62
	4.7.7	Seventh Day 22 April 2012	63
	4.7.2	Second Day 17 April 2012	64
	4.7.3	Third Day 18 April 2012	65
	4.7.4	Fourth Day 19 April 2012	66
	4.7.5	Fifth Day 20 April 2012	67
	4.7.6	Sixth Day 21 April 2012	68
	4.7.1	First Day 16 April 2012	69

5 CONCLUSSION AND RECOMMENDATION

5.1	Introduction	70
5.2	Conclusion	71
5.3	Recommendations	72

6 **REFERENCE**

7 APPENDICES

LIST OF TABLE

NO	TITLE	PAGE
2.1	AT-Command set overview	20
3.1	Syntax: AT+CMGF	41
4.1	Testing the 5VDC	56
4.2	Measured Value	59
4.3	Analysis data during charging battery of	
	The Solar Charge Controller	62
4.4	Data for First Day	65
4.5	Data for Second Day	66
4.6	Data for Third Day	67
4.7	Data for Fourth Day	68
4.8	Data for Fifth Day	69
4.9	Data for Sixth Day	70
4.10	Data for Seventh Day	71

LIST OF FIGURE

NO	TITLE	PAGE
2.1	Automatic fish feeder	10
2.2	Automatic fish feeder with LCD display	11
2.3	Digital Automatic Aquarium fish feeder food	12
2.4	Example of Mono crystalline	13
2.5	Example of Poly crystalline	14
2.6	Example of Amorphous	15
2.7	Block diagram of Smart Auto FEMASI System	16
2.8	LCD screen	17
2.9	Pin diagram of PIC16F877A	18
2.10	GSM modem	19
2.11	Pin configurations of MAX232 chip	20
2.12	Logic conversion	20
2.13	Level Sensor	21
3.1	Flowchart of methodology	25
3.2	Block diagram of Smart Auto FEMASI System	27
3.3	Power Supply for Microcontroller	28
3.4	LM7805	28
3.5	Interface Circuit to GSM	29

3.6	Clock oscillating	30
3.7	Ceramic Resonator	30
3.8	Example 1	31
3.9	Example 2	31
3.10	Push Button Switch	31
3.11	Circuit for Relay	32
3.12	Connection AC Load	32
3.13	Connection DC Load	32
3.14	LCD Construction	33
3.15	Circuit for LED sensor	34
3.16	Circuit of charger controller	35
3.17	Microcontroller Circuit	37
3.18	Connection of Buzzer	38
3.19	Flowchart for Design Concept	44
3.20	Flowchart Main Programming	45
4.1	Flowchart for Operation Circuit	58
4.2	Waveform from Solar Panel Terminal	60
4.3	Waveform from GET MOSFET Terminal	60
4.4	Waveform from battery terminal	61
4.5	Line Graph for Data Analysis	63
4.6	Connection during Data Collected	64

4.7	Graph Voltage and Current VS Time 1	65
4.8	Graph Voltage and Current VS Time 2	66
4.9	Graph Voltage and Current VS Time 3	67
4.10	Graph Voltage and Current VS Time 4	68
4.11	Graph Voltage and Current VS Time 5	69
4.12	Graph Voltage and Current VS Time 6	70
4.13	Graph Voltage and Current VS Time 7	71

LIST OF ABBREVIATIONS

A-SI	Amorphous silicon
CMOS	Complementary metal-oxide-semiconductor
EIA	Electronic Industry Association
FEMASI	Feeder Machine Solar Integrate and Interface With GSM
GND	Ground
GSM	Global System Mobile Communication
HEX	Hexadecimal
LED	Light Emitted Diode
LCD	Liquid Crystal Display
PDU	Protocol Data Unit
PIC	programmable Integrated Circuit
RAM	Read Access Memory
ROM	Read Only Memory
TTL	Transistor-Transistor Logic

LIST OF APPENDICES

APPENDICES TITLE	PAGE
Gantt chart	73
Coding for the system	75

CHAPTER 1

INTRODUCTION

1.1 Introduction

This project is design and develop Smart Auto FEMASI that's mean feeder machine with solar integrate. This kind of machine is feeding fish without observation, because this kind of machine is using timer to control the feeding time which is three time per day. By using microcontroller as main component this machine is automatic system during the feeding time. The time of feeding can change or adjust according to the fish needs. The unique of this machine is interface with Global System for Mobile Communication (GSM) to send message if food in container in low condition by using level sensor. By created this machine get help fish get enough food and can growth health.

1.2 Problems Statement

Nowadays, there are people willing to spend hundreds or thousands of money for their fish [11]. The price of exotic fishes also gets higher and can reach thousands ringgit and steel the attention from buyers. Problems occurs if the owner is away from home or been busy and forget to feed the fish. It will be such a waste if fish that is very expansive died because of the owner is too busy to feed the fish. These FEMASI system can solve this problem by providing system that can feed the feed with the feeding time is required by the user. Next, if there is error occur to the automatic system, when the owner are away, they cannot be notify that there is problem and their fish did not get the food supplement. Therefore, besides feeding the fish at required time, user can also monitor their fish

1.3 Objective

- To design an intelligent system of automatic fish feeder using PIC microcontroller.
- To develop and implement a system, which uses; Global System for Mobile Communication (GSM) modem to send the (SMS) to the owner when the sensor is trigger.
- To combine together all hardware skills, electronic knowledge with some software development in building this project.

1.4 Scope

Scope of this project is about study of fish in the ponds and about their habitat, which focus on eating habits. By combination with new technology the microcontroller is used in this project to control the feeding time to ensure that fish enough get food and feed fish in automatic. Due to the pond is located at outside solar system is applied on this project as power source. To make this project look more unique Global System for Mobile Communication (GSM) was applied too. The functionality of GSM is to send message to inform the owner that the food in the container is lower level that control by using level sensor also the red LED will be light during this level.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to provide the review of previous invention of fish feeder in many journals from various references. Besides, this chapter also reviews some components that will be used in this project with some other related studies. The contain of this chapter focus on the aquaculture field, types of pond and fish, fish food type and their composition, and the previous design of fish feeder itself.

2.2 Aquaculture

Aquaculture is the farming of freshwater and marine plants and animals. Evidently, all aquaculture is done in water and, because it is a farming activity, involves the considerations of property or the farmer who owns the products and activity or work is done in order to raise the animals or plants. Sometimes, the terms "aquiculture" and "aqua farming" are also used. This activity was done in many water source types such as river, pond, lake and others. Today's industrialist take part in this activity by investing a large amount of money in managing, inventing and also marketing the output of aquaculture which promise a good potential as a profit source to gain back a good income to them or their company[9].

2.3 Type of ornamental pond

2.3.1 Mud Pond

Ornamental ponds may be constructed by simply digging a hole and filling it with water. Ornamental ponds constructed in native soils are commonly called mud ponds. Mud ponds seldom maintain clear water, because of suspended soil particles or growth of plank tonic algae. Mud ponds are favored by the Japanese for growing large koi and for development of coloration and patterns of the fish [11]. Mud ponds are excellent for growing aquatic vegetation and develop more stable ecosystems than ponds with liners, but mud ponds seldom maintain clear water. They do not require filter systems, although supplemental aeration is recommended during summer to avoid fish kills from low dissolved oxygen. Mud ponds should contain a drain. At some time, the pond will require draining to conduct maintenance such as sediment and debris removal. An overflow drain will also minimize pond levee damage from storm water during large precipitation events [10].

2.3.2 Fiberglass Pond

This pond is usually not too large because in Malaysia, the cost of creating and providing the ponds is too expensive. The advantages of this type of pond is easy to maintain and more durable. Other than the pond of this type is very light. It also suitable for those who do not want this pond remain in one place that means, the pond of this type can moved anywhere. Normally fiberglass pond is not using to preserve the ornamental fish, but more suitable to make swimming pool [10].

2.3.3 Concrete Pond

Concrete pond is a pond made of composite material commonly used in construction. It is combination of cement and aggregate such as sand, fine and coarse aggregates. These materials are loaded in a specific rate as prescribed. This pond is popular in Malaysia because it is very easy to constructed, and cheap if compare with fiberglass pond. Normally people make this pond to preserve the ornamental fish [10].