SUPERVISOR DECLARATION

"I hereby declared that I have read this thesis and in my opinion this report is sufficient in Terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Structures-Material)"

Signature	:
Supervisor's Name	: Nor Liana Binti Salleh
Date	:

Signature	:
Supervisor's Name	: Mohd Zaid Bin Akop
Date	:

C Universiti Teknikal Malaysia Melaka

EVALUATION OF MECHANICAL PROPERTIES OF INORGANIC BASED COMPOSITIES ADHESIVE BY EXPERIMENTAL METHOD

HAMZAITUL AKMARIZAL BIN HAMDAN

This report submitted in accordance with requirement for the Bachelor Degree of Mechanical Engineering (Structure and Material)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2011

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature	:
Author	: Hamzaitul Akmarizal Bin Hamdan
Date	:

Special for My beloved mother, father and my siblings

ACKNOWLEDGEMENTS

Bismillah al rahman al rahim. In the name of Allah, I was very thankful because were able to faced any challenge while working on this Projek Sarjana Muda report. I very glad were given strength and patience for finish this report.

My deepest appreciation to Cik Nurliana Salleh because willing to take me as her PSM student, supports and cooperates with me to successfully complete my reports. As a lecturer and my supervisor, thank for taking some time of her busy schedule to guide me. I also like to extend my gratitude to Puan Zakiah and Mr Azrin Ahmad as my presentation panel for their intellectual comments and bright ideas to make my report better.

I'm also obliged to everyone who had directly and indirectly involve through contributions of ideas especially for my beloved family as well as materials supports and professional opinions. I would also like to thank all the friends for their co-operation during my studies session and their moral support and valuable help. Thank you.

ABSTRAK

Perekat komposit berunsurkan bukan organik telah menjadi jenis perekat yang penting sekarang. Sambungan perekat amat sensitive terhadap rawatan permukaan, suhu servis, kelembapan dan keadaan persekitatan yang lain. Ia begitu susah untuk menentukan lingkungan tebal yang sesuai yang memenuhi keperluan mekanikal. Dalam pengajian ini, sifat – sifat mekanikal pengikatan perekat akan di nilai dengan menggunakan kaedah eksperimen. Bahan ujikaji di dalam suhu bilik akan di uji dengan kaedah ujian ketegangan. Keluli tahan karat SU 303 dengan 3 ketebalan berbeza akan di bina dan diuji. Kesan sifat-sifat mekanikal, ketebalan perekat dan suhu bahan ujikaji diuji berdasarkan standard ASTM. Mesin Ujikaji Universal (INSTRON Model 5585) akan digunakan sebagai mesin ujikaji utama. Terdapat 12 bahan ujikaji digunakan untuk 4 ketebalan perikat yang berbeza. Untuk bahan ujikaji di mana ketebalan perikat adalah 0.1 mm, 0.3 mm, 0.5 mm dan 0.7 mm, keputusan ujikaji ketegasan adalah 4.2 MPa, 11.2 MPa, 14.4 MPa dan 16.2 MPa. Ini jelas menunjukkan bahawa apabila ketebalan perikat meningkat, kekuatan sambungan juga meningkat. Ini bermaksud perikat yang tebal menghasilkan sambungan yang lebih kuat.

ABSTRACT

Inorganic based composites adhesive become one of the most important adhesive types now. Adhesive joints are very sensitive to surface treatments, service temperature, humidity and other environmental condition. It also hard to determine the suitable range of thickness range that fulfill the mechanical requirement. In this study, the mechanical properties of adhesive bonding will be evaluated by experimental method. Same specimen temperature with different thickness will be tested using tensile testing method. 3 different thickness of adhesive by using stainless steel SU 303 as specimen were manufacture and tested. Effect of material properties, adhesive thickness, and specimen temperature is tested using ASTM standard. Universal Testing Machine (INSTRON Model 5585) will be used as main testing machine. There were 12 specimen used for 4 different adhesive thickness. For specimen which adhesive thickness were 0.1 mm, 0.3 mm, 0.5 mm and 0.7 mm, the tensile stress results were 4.2 MPa, 11.2 MPa, 14.4 MPa and 16.2 MPa. That clearly shows that, when the adhesive thickness increases, strength of the joint will be increase. That means, the thicker adhesive layer, the stronger joining will produce

TABLE OF CONTENT

CONTENT			PAGES	
TITLE			i	
DECLARATION	I		ii	
DEDICATION			iii	
ACKNOWLEDG	EMENT	ſ	iv	
ABSTRACT			V	
ABSTRAK			vi	
LIST OF TABLE	E		Х	
LIST OF FIGURE				
LIST OF APPEN	DIX		XV	
CHAPTER 1	INT	1		
	1.1	Background of Study	1	
	1.2	Problem Statement	2	
	1.3	Objective of Study	3	
	1.4	Scope of Study	3	
CHAPTER 2	LIT	ERATURE REVIEW	4	
	2.1	Introduction of Adhesive Bonding Strength	4	
	2.2	Adhesive Strength with Different Thickness	S	
		and Length	5	
	2.3	Testing of Adhesive	10	
	2.4	Shear Test	11	
		2.4.1 Joints in Shear by Tension	12	

2.5	Stress Distribution: Bond Thickness	13
2.6	Stress Distribution: Mode of Failure	14
2.7	Industrial Applications of Adhesives	16

CHAPTER 3	METHODOLOGY			18
	3.1	Mater	ial Selection	18
	3.2	Single	e Lap Joint Specimen	19
		3.2.1	Significance and Use	19
		3.2.2	Mechanical Properties of Specimen	
			Joints	20
		3.2.3	Specimen Dimension	21
	3.3	Specia	men Surface Preparation	21
		3.3.1	Preparation Handling	22
		3.3.2	Preparation Procedures	22
	3.4	Test N	Test Method for Tensile Properties of	
		Adhes	sive Bonds	23
		3.4.1	Test Specimen and Adhesive	24
		3.4.2	Procedures	24
		3.4.3	Reports	25
	3.5	Tensil	e Test	25
		3.5.1	Tensile Test Machine	26
		3.5.2	Universal Testing Machine	
			(INSTRON 5585)	27
	3.6	Specia	men Preparations	28
		3.6.1	Specimen Milling Process	29
		3.6.2	Vertical Milling Machine	30
		3.6.3	Milling Methodology	35
		3.6.4	Specimen after Milling Process	36
		3.6.5	Safety Measures	38
	3.7	Adhes	sive Joining Process	38

	3.8	Experimental Procedure	42	
	DECI		1 4	
CHAPIER 4	KESU		44	
	4.1	l'ensile l'est	44	
	4.2	Experimental Results	45	
		4.2.1 Test Results for Adhesive		
		Thickness 0.1 mm	45	
		4.2.2 Test Results for Adhesive		
		Thickness 0.3 mm	48	
		4.2.3 Test Results for Adhesive		
		Thickness 0.5 mm	51	
		4.2.4 Test Result for Adhesive		
		Thickness 0.7 mm	54	
	4.3	Comparison between Each Results	57	
CHAPTER 5	DISCUSSION			
	5.1	Results Analysis	58	
		5.1.1 Tensile Test Results Analysis	58	
		5.1.2 Adhesive Main Ingredient	59	
		5.1.3 Adhesive Behaviors	59	
		5.1.4 Voids in Adhesive Layer	61	
	5.2	Criteria of Adhesive Failure	62	
		5.2.1 Cohesive Fracture in Adhesive Layer	63	
CHAPTER 6	CON	CLUSION	66	
	6.1	Conclusion	66	
	6.2	Recommendation	67	
REFERENCES			68	
BIBLIOGRAPHY			70	
APPENDIX				

LIST OF TABLE

NUM	TITLE	PAGES
Table 2.1:	ASTM and BS classification (Source: ASTM and BS Standard)	13
Table 3.1:	Mechanical Properties of Specimen Joints (Source: Shirley, 2005)	20
Table 3.2:	Adhesive Thickness vs Milling Area Thickness	30
Table 4.1:	Tensile Test Result for 0.1mm Adhesive Thickness	46
Table 4.2:	Tensile Test Result for 0.3mm Adhesive Thickness	49
Table 4.3:	Tensile Test Result for 0.5mm Adhesive Thickness	52
Table 4.4:	Tensile Test Result for 0.7mm Adhesive Thickness	55

LIST OF FIGURE

NUM	TITLE	PAGES
Figure 2.1:	Tensile test specimen and stress strain curve	6
	(Source: Jae, H.P et al, 2009)	
Figure 2.2:	Manufactured an adhesive joint specimen	7
	(Source: Jae, H.P et al, 2009)	
Figure 2.3:	Experimental failure load of adhesive joints of	
	different adhesive thickness	8
	(Source: Jae, H.P et al, 2009)	
Figure 2.4:	Experiment failure load of adhesive joints of	
	different adhesive lenghts	9
	(Source: Jae, H.P et al, 2009)	
Figure 2.5:	Variation of shear modulus and loss tangent with the	
	temperature for an epoxy resin cured for different	
	times at 160 °C	11
	(Source: Kim and Kedward, 2001)	
Figure 2.6	(a) shear deformation (b) lap joint (c) torsional joint	11
	(Source: Adam and Peppiatt, 1974)	
Figure 2.7	Altering the loading mode can result in (clockwise	
	from top left) cohesive, interfacial, alternating and oscillating	15
	(Source: Erdogan and Aydinogluy, 1982).	

Figure 2.8	Crack tends to grow perpendicular to the largest tensile stress, a shear stress state has a tendency to drive cracks in different directions. (Line arrows show stresses, open arrows	
	show crack propagation tendency)	16
	(Source: Erdogan and Aydinogluy, 1982).	
Figure 2.9:	Typical applications of adhesive in car body	17
	(Source Jettiwa and Killoch, 1990).	
Figure 3.1.	Single I an Joint	20
Figure 5.1.	Single Lap Joint	20
Figure 3.2:	Single Lap Joint	21
Figure 3.3:	Universal Testing Machine (INSTRON Model 5585)	27
Figure 3.4:	Specimen SS 304 25mm x 100mm x 7mm	29
Figure 3.5:	Specimen before and after Milling Process	29
Figure 3.6:	Edge Finder	31
Figure 3.7:	Face Mills	31
Figure 3.8:	Centre Drills	32
Figure 3.9:	Drill	32
Figure 3.10:	Roughing	33
Figure 3.11	End Mill	33
Figure 3.12:	Counter Bore	34
Figure 3.13:	Counter Sink	34
Figure 3.14	Vertical Milling Machine	35
Figure 3.15:	Specimen for 0.1mm adhesive thickness	36

Figure 3.16:	Specimen for 0.3mm adhesive thickness	36
Figure 3.17:	Specimen for 0.5mm adhesive thickness	37
Figure 3.18:	Specimen for 0.7mm adhesive thickness	37
Figure 3.19:	Aron Ceramic C Adhesive	39
Figure 3.20:	Adhesive were placed at the clean surface	40
Figure 3.21:	The specimen were left in room temperature	40
Figure 3.22:	Heating Oven	41
Figure 3.23:	Heating Temperature 90 °C	41
Figure 3.24:	Specimen were taken out from the oven for atural cooling	42
Figure 3.25:	Adhesive condition after experiment	43

Figure 4.1:	Tensile Test Graph for 0.1mm Adhesive Thickness	45
Figure 4.2:	Tensile Test Graph for 0.3mm Adhesive Thickness	48
Figure 4.3:	Tensile Test Graph for 0.5mm Adhesive Thickness	51
Figure 4.4:	Tensile Test Graph for 0.7mm Adhesive Thickness	54
Figure 4.5:	Load at Break for each adhesive thickness	57
Figure 4.6:	Tensile Stress for each adhesive thickness	57
Figure 5.1:	Stress-Strain Curve for Ductile and Brittle Materials	60
Figure 5.2:	Adhesive Layer after Tensile Test	61
Figure 5.3:	Failure Modes in Adhesively Bonded Joints	62

Figure 5.4:	Adhesive Layer after experiment	64
Figure 5.5:	Cohesive in the middle	65
Figure 5.6:	Cohesive near the interface	65

xiv

LIST OF APPENDIX

NUM	TITLE	PAGES
1	Appendix A: Flow Chart	71
2	Appendix B: PSM Gantt Chart	72
3	Appendix C: Aron Ceramic C Specification	73
4	Appendix D: Standard Therminologyof Adhesuves	75

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Heading to the end of the 2010, the development of composites as adhesive materials become more and more important. An inorganic based composite enters new level and play a bigger role in structure joints. Commonly, the available joining methods can be classified into two types, mechanical and adhesive. Adhesive joints do not require holes and they distribute load over a large area than mechanical joints.

Compare to mechanical joints like fastened, adhesive joints are stronger. Mechanical fastening can only achieve a maximum tensile strength of 50% of the weakest adherend in the joint due to the stress concentrations caused by the fastener holes. In comparison, adhesively bonded joints can achieve in excess of 80% of the tensile strength of the weakest adherend even with a simple single-shear configuration However; adhesive joints are very sensitive to surface treatments, service temperature, humidity and other environmental conditions.

There a long list that can become the factor that can cause the failure of the adhesive bonding. One of the factors is cohesive fracture. Cohesive fracture is obtained if a crack propagates in the bulk polymer which constitutes the adhesive. In this case the

surfaces of both adherents after debonding will be covered by fractured adhesive. The crack may propagate in the centre of the layer or near an interface. Others factor is interfacial fracture. Cohesive fracture is obtained if a crack propagates in the bulk polymer which constitutes the adhesive. In this case the surfaces of both adherents after debonding will be covered by fractured adhesive. The crack may propagate in the centre of the layer or near an interface.

1.2 Problem Statement

Adhesive joints are often the weakest link at the structure joints. Adhesive joints are very sensitive to surface treatments, service temperature, humidity and other environmental condition. To overcame and get the full performance from adhesive joints, it requires a specific adhesive joint design, enhancing its performance and reducing its limitations.

There have many factors that influence the mechanical properties of the adhesive bonding. The two main factors are the thickness of the adhesive and the specimen/object temperature. The main problem is to find the suitable thickness range that fulfill the mechanical requirements and guarantee for a suitable reliability. The results of this study will has a clear economic impact on the manufacturing processes because if the result of the study show that the less thickness of the adhesive produce the higher bonding strength, it will save adhesive materials cost.

1.3 Objective of Study

The main objective are this study is to make a research about mechanical properties of inorganic based composites adhesive. In this study, the strength of the inorganic based composites will be tested based on the thickness of the adhesive bonding and the specimen temperature. The objective of this study is:

- i. To evaluate the mechanical properties of Inorganic Based Composites adhesive at room temperature.
- ii. To study the influences of the adhesive thickness to the mechanical properties of the bonding joints.
- iii. To used the appropriate experimental method to evaluate the result of the adhesive thickness to the bonding joints

1.4 Scopes of Study

To make this study more specific and details, there were some scopes must be considered as well:

- i. Focusing on single lap joint will be tested in experimental method
- ii. Using SUS 304 as specimen material
- iii. Using inorganic composites adhesive

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction of Adhesive Bonding Strength

The true strength of an adhesive is a material property independent of the geometry, adherend properties and load and is a good starting point for determining an allowable design stress. Allowable stresses in shear and tension are needed to design safe, efficient, adhesively bonded joints and structures. The composite adhesives become very important research now.

Many researchers have studies and investigate this adhesive joint. Jae-Hyun Park, Park Jin-Ho Choi and Jin-Hwe Kweon (Jae, H.P *et al.* 2009) studies the evaluating the strengths of thick aluminum to aluminum joints with different adhesive lengths and thickness. Do Won Seo and Jae Kyoo Lim (Do, W.S *et al*, 2005) investigates tensile, bending and shear strength distributions of adhesive of adhesive-bonded butt joint specimen. They carried an experiment in order to provide the statistical data with strength evaluation methods: tensile, shear and four-point bending

tests for thermosetting epoxy resin based adhesive-bonded butt joints. The certification of the probability in the adhesive is evaluated.

Jose M. Arenas, Julian J. Narbon and Cristina Alia (Arenas, J.M *et al*, 2009) investigate optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weilbull distribution. The experiment study consisted of a shear tensile strength test of 20 specimen representative of each thickness of adhesive considered (7 thickness of between 0.2 mm and 0.8 mm) following standard UNE-EN 1465 on the determination of the shear strength of single lap joints adhesively bonded with rigid substrates.

Kim KS, Yoo JS, Yi YM (Kim. K.S *et al*, 2006) studies failure mode and strength of indirectional composite single lap bonded joints with different bonding methods They investigated how best to predict the strength of a single adhesive lap joints. Owens James and Sullivian (James and Sullivian, 2000) analyzed and tested the modulus of an single lap joint composed of composite material and aluminum.

Karl E Hokanson and Avram Bar-Coben (Hokanson and Coben, 1995) studies a shear-based optimization of adhesive thickness for die bonding. Choi JH and Lee (Choi and Lee, 1994) investigate the torque transmission capabilities of the adhesive bonded tubular single lap joint and the double lap joint. Hart-Smith LJ (Smith, 1985) designing to minimize peel stresses in adhesive bonded joints. He proposed a maximum strain failure criterion to predict failure loads for a given adhesive joint.

2.2 Adhesive Strength with Different Thickness and Length

Jae-Hyun Park, Park Jin-Ho Choi and Jin-Hwe Kweon in their studies in 2009 used 8 different lengths and 4 adhesive thicknesses to test and analyze the strengths of single lap joints made of thick aluminum adherends. Aluminum alloy 660-T6 and FM73 M epoxy adhesive film were used. Elastic modulus of adhesive is 4.2 GPa, Poisson"s ratio is 0.45 and tensile strength is 58.7 MPa. Figure 2.1 show the tensile test specimen and the stress-strain curve of the adhesive.

The surface treatment of the aluminum adherend follows ASTM D 2851 and includes several steps. First, the surface of the aluminum was polished with the 40 mesh sandpaper and corroded using 27% sulfuric acid and 135g/L ferric sulfate for 12 minutes. After the corrosion step, the surfaces were cleaned and dried using water. The assembled adhesive joints were cured by autoclaving at 120°C for 120 minutes. The fillets of the adhesive joints were removed using razor.

Figure 2.1 Tensile test specimen and stress strain curve.

(Source: Jae, H.P et al. 2009)

Figure 2.2: Manufactured adhesive joint specimen (Source: Jae, H.P et al. 2009)

Universal Testing Machine Instron 5582 with crosshead speed fixed at 1 mm/min. Five specimens were tested for each case to obtain an average failure load. A drop in load was used to detect a failure. From experiment result, they note that the adhesive would adhere to both aluminum surfaces and that a cohesive failure would subsequently occur. Figure 2.4 show the experimental failure loads of the adhesive joints with the adhesive length of (a) l = 25mm and (b) l = 30mm.

As shown in Figure 2.3, the failure loads of the adhesive joints increased with the increasing adhesive length but the adhesive strengths decreased if the adhesive length was over 15 mm The failure loads and strength of these joint were found to be constant with the adhesive length of 25mm. In addition, the failure loads of the adhesive loads of the adhesive joints for which the adhesive thickness was greater than 0.3 mm increased when the adhesive length reached 30mm.

Figure 2.3: Experimental failure load of adhesive joints of different adhesive thickness

(Source: Jae, H.P et al. 2009)