

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Karung Berkunci 1200, Hang Tuah Jaya, Ayer Keroh, 75450 Melaka

Tel: 06 - 555 2111, Faks: 06 - 555 2112

E-mel: fkekk@kutkm.edu.my / fkekk@utem.edu.my

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

Rujukan Kami (Our Ref): UTeM 22/15.12/1 (3)

Rujukan Tuan (Your Ref):

20 JULAI 2007

Puan Siti Saluwa binti Jamal

Pustakawan Unit Hadiah & Pertukaran

> Melalui & salinan; Ketua Pustakawan Perpustakaan

Assalamualaikum wrt. wbt,

Puan,

PENGKELASAN LAPORAN PROJEK SARJANA MUDA (PSM) SEBAGAI SULIT/ TERHAD

NAMA PENULIS : NUR HANISAH BINTI BUANG

KURSUS : SARJANA MUDA KEJURUTERAAN ELEKTRONIK (ELEKTRONIK INDUSTRI)

TAJUK: Investigation of Handphone Manufacturing Process

Dengan hormatnya saya merujuk kepada perkara di atas.

2. Sukacita dimaklumkan bahawa laporan yang tersebut di atas, mohon dikelaskan sebagai TERHAD untuk tempoh lima (5) tahun dari tarikh surat ini. Ini kerana laporan tersebut ada mengandungi maklumat sulit syarikat di mana kajian ini dijalankan.

Kerjasama daripada pihak Puan mengenai perkara ini diucapkan terima kasih.

Sekian. Wassalam.

" BERKHIDMAT UNTUK NEGARA"

Saya yang menurut perintah,

Penyelaras Projek Sarjana Muda

Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer

b.p Dekan

s.k

En. Zulhairi bin Othman

Ketua Jabatan Elektronik Industri

Fakulti Kejuruteraan Elektronik dan kejuruteraan Komputer

moon/pengkelasan laporan psm/fkekk

INVESTIGATION OF HANDPHONE MANUFACTURING PROCESS

NUR HANISAH BINTI BUANG

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronic)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
Universiti Teknikal Malaysia Melaka

April 2006

CUBIC LEARNING FACTORY SON BHD (731432-M) NO. 1, JALAN T.U. 43, TAMAN TASIK UTAMA, AYER KEROH, 75450 MELAKA.

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek	: INVESTIGA	TION OF HANDPHONE MANUFACTURING PROCESS
Sesi Pengajian	: 2006/2007	
mengaku mem syarat kegunaa	benarkan Laporan P in seperti berikut:	UR HANISAH BINTI BUANG
(454)		rersiti Teknikal Malaysia Melaka.
		buat salinan untuk tujuan pengajian sahaja.
pengajian	tinggi.	buat salinan laporan ini sebagai bahan pertukaran antara institusi
Sila tandal	kan (√):	
	SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
\checkmark	TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	TIDAK TERHAD	
		Disahkan oleh:
(T	May . Abdatangan penui	(001)
	2, JLN KERUING 4A/2,	ZULHAIRI B OTHMAN Ketua Jabatan (Elektronik Industri)
	ГМN KERUING, 14200 RASA, SELANGC	Fakulti Kej Elektronik dan Kei Kumputer (FKEKK),
Tarikh: 27 APR	IL 2007	Tarikh: 27 APRIL 2007

Ref: CLF.EXT.1074/07

Date: 5th April 2007

Supervisor Name: En Zuhairi Bin Othman

TO WHOM IT MAY CONCERN

This is to certify that Nur Hanisah Binti Buang, IC No. 840418-06-5402, who is a Bachelor Engineering undergraduate from University Technical Malaysia Malacca has undergone a project attachment with Cubic Electronics Sdn Bhd.

She has specifically completed a project study on Investigation Of Handphone Manufacturing This project is strategy collaboration under the MOU between CESB and UTEM, which coordinated by Cubic Learning Factory. The projects given are concentrating in our latest project Magic and Minimo Multimedia Phone specifically focus on production process cycle time and it improvement. The priority of this program is to improve Cubic production process capability. Project completed with excellence process and now production are in optimize process.

During her short period with our company, we found that she is industrious, creative, innovative and capable of handling all the assignments given to her. We would like to recommend that she is a good learner with a great attitude and also a proactive player in her team.

Your Sincerely,

(ABDUL RASHID A. JALIL)

CLF MANAGER

'I admit that I had read this report and in my opinion this report is sufficient in the manner of scope and quality, to be awarded with a Bachelor of Electronic

Engineering with honors (Industrial Electronic)"

Signature

Supervisor Name

: Mr. ZULHAIRI BIN OTHMAN

Date

: 27 APRIL 2007

ZULHAIRI B OTHMAN Ketua Jabatan (Elektronik Industri) Fakulti Kej Elektronik dan Kej Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM),

Karung Berkunci 1200, Ayer Keroh, 75450 Melaka "I admit that I had read this report and in my opinion this report is sufficient in the manner of scope and quality, to be awarded with a Bachelor of Electronic Engineering with honors (Industrial Electronic)"

Signature

Supervisor Name

: En. Sik Chong Weai

Date

25th Japan 2007

CUBIC ELECTRONICS SDN. BHD.
295864-X
ND. 1, JALAN T.U. 43,
TAMAN TASIK UTAMA,
AYER KERDH,
75450 MELAKA.
TEL: 06-2512888 FAX: 06-251 2999

"I admit this report is written by me except the summary and extraction for each I have been clearly presented."

Signature

· . fry

Name

: NUR HANISAH BINTI BUANG

Date

: 27 APRIL 2007

Special dedicated to my beloved parents, family and fellow friends, who had strongly encouraged and supported me in my entire journey of learning....

ACKNOWLEDGEMENT

Firstly, a lot of thanks and deepest gratitude to my supervisor, Mr Zulhairi Bin Othman who has supervise me a lot of knowledge and information regarding a final project, which is also known as Projek Sarjana Muda (PSM), due to a research of manufacturing process. Mr Zulhairi always guide me regarding manufacturing process, willing to share a great experience especially in managing a project, encouraging me to improve my performance and able to advice for own goods.

Thanks to Cubic Electronic Sdn. Bhd.(CESB) who give me the opportunity to undergone a project with them. This project is strategy collaboration under MOU between CESB and UTEM which coordinate by Cubic Learning Factory. Not forgetting my industrial supervisor, for Mr Sik Chong Weai who gives me the information and a lot of knowledge about the manufacturing process. Thanks for your helped.

Not forget, my inadequate to my parents, Mr Buang Bin Abdul Rahman and Ms Khadijah Binti Othman who never give up encouraging me, kind, helpful and supportive me a lot since the project begin. In addition, thanks to my friends who have been for supporting and encourage me a lot during completing this Projek Sarjana Muda.

Finally, for those who give a contribution in my training whether direct or indirectly involved thanks a lot. Completing my Projek Sarjana Muda with the title of Investigation of Handphone Manufacturing Process successfully is the pleasant time for me.

ABSTRACT

This project involve in actual handphone manufacturing process. The hanphone is called Minimo which is the first low cost multimedia phones featuring a full featured MP3 player, a 2Mega Pixel camera and a mini SD memory card for the price of a normal color screen phone. The growing population of cell phones increases the number of competitor. Industries need to produce good features and quality handphone. Those make the cost to produce a handphone increase. To make sure production cost balance with the profit, the company have to reduce production cost. There are two methods in six sigma that have been focus to reduce the cost and at the same time increase the output without forget the quality of the handphone. The methods that have been used are standard time analysis and yield analysis. The statistical tools of Six Sigma system are designed to help an organization correctly diagnose the root causes of performance gaps and variability, and apply the most appropriate tools and solutions in addressing those gaps.

ABSTRAK

Dewasa ini, penggunaan telefon bimbit digunakan dengan meluas di seluruh dunia tanpa mengira umur. Projek ini terlibat dalam proses pembuatan telefon bimbit iaitu Minimo. Minimo merupakan telefon multimedia dengan kos yang rendah tetapi mempunyai pelbagai fungsi yang memenuhi citarasa pelanggan. Pertambahan jenis telefon bimbit telah meningkatkan bilangan pesaing antara industri. Oleh itu, setiap industri mesti mengeluarkan jenis telefon bimbit yang berkualiti dengan fungsi yang menarik dan pelbagai. Oleh itu, untuk memastikan kos pengeluaran seimbang dengan keuntungan, industri harus mengurangkan kos pengeluaran. Terdapat dua metodologi dalam six sigma yang difokuskan agar dapat menambahkan output sekaligus mengurangkan kos pengeluaran. Metodologi yang dimaksudkan ialah analisis masa dan produk. Six sigma adalah kaedah yang terbaik untuk menganalisa data yang menjadi punca utama masalah dan seterusnya mencari jalan penyelesaian terbaik bagi menyelesaikan masalah tersebut.. Kebanyakan industri menggunakan kaedah ini dalam setiap proses pengeluaran.

TABLE OF CONTENT

CHAPTER	TITL	E	PAGE
	PRO.	JECT TITLE	i
	PENO	GAKUAN	ii
	DED	ICATION	vi
	ACK	NOWLEDGEMENT	vii
	ABS	ГКАСТ	viii
	ABS	ГКАК	ix
	TABLE OF CONTENT		x
	LIST OF FIGURE		xiii
	LIST OF TABLE		xiv
	LIST	OF APPENDICES	xvi
1	INTR	RODUCTION	
	1.1	INTRODUCTION	1
	1.2	SCOPE OF WORK	4
	1.3	PROJECT OBJECTIVES	5
	1.4	PROBLEM STATEMENT	5

2 LITERATURE REVIEW			
	2.1	THE HISTORY OF SIX SIGMA	6
	. 2.2	THE EVOLUTION OF SIX SIGMA	7
	2.3	WHY IMPROVING QUALITY IS IMPORTANT	12
	2.4	SIX SIGMA METHOD	12
		2.4.1 8 Discipline	14
		2.4.2 Six Sigma DMAIC	15
3	RES	EARCH METHODOLOGY	
	3.1	ACTIVITY FLOWCHART	16
	3.2	PROCESS FLOWCHART	18
	3.3	STANDARD TIME ANALYSIS	20
	3.4	YIELD LOSS ANALYSIS	22
4	STAN	NDARD TIME ANALYSIS	
	4.1	MINIMO M760 FA (Final Assembly)	23
	4.2	MINIMO M760 FG (Packing)	33
	4.3	TOTAL IMPROVEMENT OF THE WHOLE	38
	7.5	PROCESS	38
	4.4	DISCUSSION	39

5	YIELI	YIELD ANALYSIS		
	5.1	YIELD ANALYSIS 5.1.1 Gap in between plastic back cover	41	
		and battery	43	
		5.1.2 Insufficient solder	45	
		5.1.3 SD Cover easily broken	46	
		5.1.4 Mini SD stuck when removing from the phone	e	
	5.2	DISCUSSION	49	
6	CONC	LUSION		
	7.1	THE CONCLUSION	50	
7	REFER	ENCES	51	
8	APPEN	DICES		
	APPEN	DIC A	53	
	APPEN	DIC B	54	
	APPENI	DIC C	55	

List of Figures

Title		Page	
Figure 1.1	MAGIC Final Prototypes	3	
Figure 1.2	MINIMO Final Prototype	3	
Figure 2.1	Improve Quality in Industries	12	
Figure 3.1	Flow Chart of Project Activities	17	
Figure 3.2	Flow Chart of MAGIC Handphone manufacturing	19	
	process		
Figure 3.3	Flow Chart of MINIMO Handphone manufacturing	20	
	Process		
Figure 3.4	Flow chart of standard time activities	21	
Figure 5.1	Main reject at MINIMO handphone	42	
Figure 5.2	Plastic back cover was assemble up side	43	
Figure 5.3	Plastic back cover was assemble near to the battery	44	
	compartment.		
Figure 5.4	Before and after implement the corrective action	44	
Figure 5.5	Before and after implement the corrective action.	45	
Figure 5.6	Apply 2 drop locktide(glue) at SD Cover	46	
Figure 5.7	Before and after implement the corrective action.	47	
Figure 5.8	Mini SD stuck inside the unit	48	
Figure 5.9	Before and after implement the corrective action	48	

List of Tables

	Title	Page
Table 4.1	Improvement at Final Assembly – Pcba 1	24
Table 4.2	Improvement at Final Assembly - Pcba 2	24
Table 4.3	Improvement at Final Assembly – Pcba 3	25
Table 4.4	Improvement at Final Assembly - Pcba 4	26
Table 4.5	Improvement at Mech Plastic Frame 1	26
Table 4.6	Improvement at Mech Plastic Frame 2	27
Table 4.7	Improvement at Mech Plastic Frame 3	27
Table 4.8	Improvement at Mech Plastic Frame 4	28
Table 4.9	Improvement at FA-1	29
Table 4.10	Improvement at FA-2	29
Table 4.11	Improvement at FA-3	30
Table 4.12	Improvement at FA-4	31
Table 4.13	Improvement at FA Process - Functional check	32
Table 4.14	Improvement at FA - RF (Off the airtest)	32
Table 4.15	Improvement at FA Process - Power up and VMI	33
Table 4.16	Improvement at FA Process - Programming	33
	(1 x 8 programing station)	
Table 4.17	Improvement at FA Process - IMEI loading/FA	34
	serial numbering	
Table 4.18	Improvement at FA Process - IMEI loading/FA	35
	serial numbering Checkpoint	

Table 4.19	Improvement at Packing 1- Forming Color box	35
	and Acc loading	
Table 4.20	Improvement at Packing 2- Serial numbering	36
	and pasting	
Table 4.21	Improvement at Packing 3- Unit loading and IMEI	37
	number printing	
Table 4.22	Improvement at Packing 4 - Sealing and Weighting	37
Table 4.23	Before and After Improvement in FA process	38
Table 4.24	Before and After Improvement in FAFG process	38
Table 5.1	Root cause for gap in between plastic back cover	43
	and battery	
Table 5.2	Root cause for insufficient solder	45
Table 5.3	Root cause for SD Cover easily broken	46
Table 5.4	Root cause for SD stuck	47

List of Appendices

Title	Page
Appendix A	53
Appendix B	54
Appendix C	55

CHAPTER I

INTRODUCTION

This chapter briefly explains about the project which involve in actual handphone manufacturing process in CESB production line.

1.1 INTRODUCTION

This project is classified since it involves actual handphone manufacturing process in CESB production line. In this project, we use six sigma method which is a highly discipline process that helps organizations focus on developing and delivering near perfect product and services.[5]

We are involved in MAGIC and MINIMO manufacturing process. M.A.G.I.C, is the world's first unique high end convergent communication device for the world market. The core competency for this project will be provided by Dr. Shiv Verma. The R&D and hardware design team with current staff strength of 8 engineers and 6 support staff in marketing, finance/administration, will be based in Malaysia. The team will be supported by dedicated resources from USA, HK and China. The product will be manufactured by OEM arrangements with manufacturing partners, Cubic Solutions S/B.

ATC has a substantial contract from China Media Group to supply to the China market [9] while Minimo M2 series are the first low cost multimedia phones featuring a full featured MP3 player, a 2Mega Pixel camera and a miniSD memory card for a low retail price. [10]

Six Sigma method is the best method to apply in this project. Six Sigma is not just another management catch phrase. Rather, it is a highly disciplined process that helps a business develop and deliver near perfect products and services. By accurately measuring the number of defects in a process, it can systematically eliminate them. Achieving Six Sigma indicates that have less than four defects per million transactions.

Six Sigma goes beyond small point improvements in product quality to the very fabric of the organization as a whole. It is a process for both improving performance and ensuring consistency in the delivery of a product or service. Most importantly, Six Sigma focuses on the customer. It continuously and rigorously measures those elements the customer identifies as "critical-to-quality."[5]

MAGIC Final Prototype

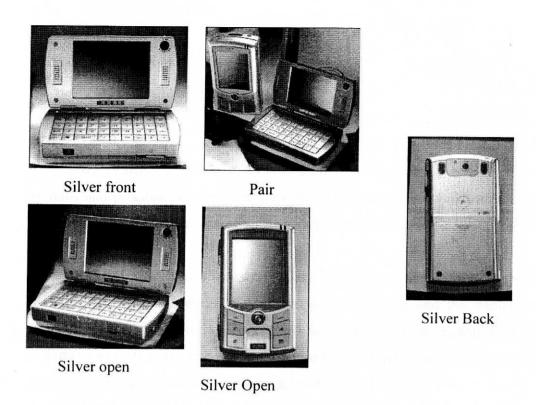


Figure 1.1 MAGIC Final Prototypes

MINIMO Final Prototype

Figure 1.2: MINIMO Final Prototype

1.2 SCOPES OF WORK

In this project, we focus on:

a) Cycling time:

Six sigma methodology uses problem solving techniques to determine how systems and processes operate and how to reduce variation in processes. Lean creates the standard and Six Sigma investigates and resolves any variation from the standard.[5]

Lean methodology focus on product flow and on the operator. It refers to the product that can be produced in the least amount of time and the standardization of operator methods when doing work. Flow focused cells in an organization reduce the communication barriers that exist at the numerous interfaces between operation and greatly reduce the time to achieve a completed part. [2]

b) Yield analysis:

Analyze the data and make a report in industrial acceptable format. Identify all potential causes which could explain why the problem occurred. Identify alternative corrective actions to eliminate root cause.

1.3 PROJECT OBJECTIVES

Objectives of this project are:

- To track and summarize CESB handphone manufacturing data in industrial acceptable format.
- ii) To analyze the data. Together with project supervisors, the data analysis should lead to suggestions for improvements in an acceptable format.

If situation permits, the students will monitor and report the result of the improvement plan.

1.4 PROBLEM STATEMENTS

Problem statement that we face in MAGIC is:

Magic is the first handphone that will run in CESB, so we will face some problem in the process.

Problem statement that we face in MINIMO is:

The growing population of cell phones increases the no of competitor. Company need to produce good features and quality handphone and the cost will be increase. To make sure production cost balance with the profit the company have to reduce production cost.

CHAPTER II

LITERATURE REVIEW

2.1 The History of Six Sigma

The roots of Six Sigma as a measurement standard can be traced back to Carl Frederick Gauss (1777-1855) who introduced the concept of the normal curve. Six Sigma as a measurement standard in product variation can be traced back to the 1920's when Walter Shewhart showed that three sigma from the mean is the point where a process requires correction. Many measurement standards (Cpk, Zero Defects, etc.) later came on the scene but credit for coining the term "Six Sigma" goes to a Motorola engineer named Bill Smith. (Incidentally, "Six Sigma" is a federally registered trademark of Motorola).

In the early and mid-1980s with Chairman Bob Galvin at the helm, Motorola engineers decided that the traditional quality levels -- measuring defects in thousands of opportunities -- didn't provide enough granularity. Instead, they wanted to measure the defects per million opportunities. Motorola developed this new standard and created the methodology and needed cultural change associated with it. Six Sigma helped Motorola realize powerful bottom-line results in their organization. In fact, they documented more than \$16 Billion in savings as a result of our Six Sigma efforts.