DESIGN A BALLAST TANK FOR DEPTH CONTROL UNDERWATER VEHICLE

Muhamad Fauzi Bin Ab Latip

Bachelor of Mechatronic Engineering

June 2012

"I hereby declared that I have read through this report entitle "Design a Ballast Tank for Depth Control Underwater Vehicle" and found that it has comply the partial fulfilment for awarding the Bachelor of Mechatronic Engineering."

Signature	·
Supervisor's Name	: Puan Fadilah Binti Abdul Azis
Date	:

DESIGN A BALLAST TANK FOR DEPTH CONTROL UNDERWATER VEHICLE

Muhamad Fauzi Bin Ab Latip

A report submitted in partial fulfilment of requirements for Bachelor of Mechatronic Engineering.

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2012

I declare that this report entitle "Design a Ballast Tank for Depth Control Underwater Vehicle" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Muhamad Fauzi Bin Ab Latip
Date	·

ACKNOWLEDGEMENT

First and foremost, I would especially like to devote a great appreciation to my supervisor, Madam Fadilah Binti Abdul Azis for the ideas, guidance, suggestions and knowledge of Design a Ballast Tank for Depth Control Underwater Vehicle and contributions in completion of this final year project.

I also would like to take this opportunity to express my gratitude to my university, Universiti Teknikal Malaysia Melaka (UTeM) for giving me the opportunity in my studies. I would also like to thank my academic advisor and all lecturers in Faculty of Electrical Engineering for the help, guidance and support. Not forgetting the lab technician for their help.

A thousand thanks go to my family and friends for their endless prayers, encouragement, understanding and patience. To Safie, Syed Razlan Shah, Noramin and Sam, thank you for the support and opinions. Special thanks to my special friend Noraini Maan for the support, time and knowledge. Finally, thank you to everybody who helped me in completing the project and report writing, directly or indirectly, May Allah S.W.T blessed you all.

ABSTRACT

In underwater vehicle industry, ballast tank is important to allow the vehicle to dive and float back. This project describes a design and development of ballast tank. The project is to show one of its operation principles which are it can submerge underwater and rise back up using remote control. For deep Underwater Vehicle (UV) the most important part is that ballast tank. Without this, there is not possibility that the vehicle can submerged more depth. This project is developing a prototype of ballast tank which are attached to Remotely Operated Vehicle (ROV) to demonstrate the basic operation of ballast tank as well as it operation in the water. Most of the ROV implement static dive using thrusters. Thus, the purpose of this project is to develop a low cost of ballast tank that implement static dive concept. In Underwater Vehicles, ballast tanks are used to let the ROV to submerge, water being taken in to change the UV's buoyancy and let it to submerge. When the ROV rise up, water is exhale out from the tanks by water pump, and UV becomes positively buoyant again, letting it to move up to the surface.

ABSTRAK

Dalam industri kenderaan di bawah air, tangki balast adalah penting untuk membolehkan kenderaan untuk menyelam dan timbul kembali ke permukaan. Projek ini menerangkan rekabentuk dan pembangunan tangki balast. Projek ini adalah untuk menunjukkan salah satu daripada prinsip-prinsip operasi tangki balast di mana ia boleh menyelam di dalam air dan naik semula dengan menggunakan alat kawalan jauh. Untuk kenderaan dalam air yang dalam, bahagian yang paling penting adalah tangki balast. Tanpa tangki balast, amat sukar kenderaan itu untuk tenggelam lebih dalam. Projek ini adalah untuk membangunkan prototaip tangki balast yang digabungkan bersama dengan kenderaan kendalian dari jauh untuk menunjukkan operasi asas tangki balast semasa di dalam air. Kebanyakkan kenderaan kendalian dari jauh yang menyelam statik hanya menggunakan "thruster". Oleh itu, tujuan projek ini adalah untuk membangunkan satu projek kos rendah mereka tangki balast yang melaksanakan konsep menyelam statik. Dalam kenderaan dalam air, tangki balast digunakan untuk membolehkan kenderaan kendalian dari jauh tenggelam, air yang masuk telah mengubah keapungan kenderaan dalam air, dan membolehkan ia untuk menyelam. Apabila kenderaan kendalian dari jauh hendak timbul di permukaan, air ditolak keluar dari tangki menggunakan pam air dan kenderaan dalam air akan menjadi daya apungan positif dan ia akan naik semula ke permukaan air.

TABLE OF CONTENT

CHAPTER	TITLE	PAGI
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	ABSTRAK	iii
	TABLE OF CONTENT	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OF APPENDICES	xi
1	INTRODUCTION	1
	1.1 Project Overview	1
	1.2 Problem Statement	2
	1.3 Project Objective	3
	1.4 Project Scope and Limitation	4
2	LITERATURE REVIEW	5
	2.1 Diving Technology	5
	2.2 Static Diving	6
	2.3 Dynamic Diving	7
	2.4 Types of Ballast Tank	8
	2.4.1 Vented Ballast Tank	9
	2.4.2 Flexible Ballast Tank	10
	2.4.3 Pressure Ballast Tank	11
	2.4.4 Piston Ballast Tank	11
	2.4.5 Membrane Ballast Tank	12

v

4.3.6 Troubleshoot and final test

4.3.5 Testing and analysis operation of ballast tank and ROV

CHAPTER	TITLE	PAGE
	4.4 Project planning	56
5	RESULT AND ANALYSIS	58
	5.1 Operation	58
	5.1.1 Concept of operation ballast tank	58
	5.2 Testing and Analysis	59
	5.2.1 Experiment	59
6	DISCUSSION OF RESULT	97
	6.1 Discussion	97
7	CONCLUSION	99
	7.1 Conclusion	99
	7.2 Recommended for the future development	100
	REFERENCES	102
	APPENDICES	104

LIST OF TABLES

TABLE TITLE

PAGE

Table 2.1	Comparison of Differences Types of Ballast Tank	15
Table 2.2	Pairwise Comparison	18
Table 2.3	Weighted Objective Method	19
Table 4.1	Project planning	57
Table 5.1	Component applied force	62
Table 5.2	The position of tube for motor pump	72
Table 5.3	The changes of ballast tank base on the position of tube	73
Table 5.4	The effect from air pressure inside of ballast tank	75
Table 5.5	Leakage experiment	77
Table 5.6	Experiment for determine the flow rate when filling the water	80
Table 5.7	Experiment for determine the flow rate when draining the water	81
Table 5.8	Experiment to determine volume inside of ballast tank	81
Table 5.9	Experiment for determine the flow rate when filling the water	86
Table 5.10	Experiment for determine the flow rate when draining the water	87
Table 5.11	Experiment to determine volume inside of ballast tank	87
Table 5.12	Experiment for determine the flow rate when filling the water	92
Table 5.13	Experiment for determine the flow rate when draining the water	93
Table 5.14	Experiment to determine volume inside of ballast tank	93

LIST OF FIGURES

FIGURE TITLE

PAGE

Figure 2.1	The different location of the main ballast tank	6
Figure 2.2	The flooding of the main ballast tank	6
Figure 2.3	The blowing of the main ballast tank	7
Figure 2.4	The fore and aft dive planes are used during a submerge	8
Figure 2.5	Ballast tank	8
Figure 2.6	Vented ballast tank	9
Figure 2.7	Flexible ballast tank	10
Figure 2.8	Pressure ballast tank	11
Figure 2.9	Piston ballast tank	11
Figure 2.10	Membrane ballast tank	12
Figure 2.11	Below ballast tank	13
Figure 2.12	Gas operated ballast tank	13
Figure 2.13	Compressed air ballast tank	14
Figure 2.14	Positive Buoyancy	20
Figure 2.15	Negative Buoyancy	21
Figure 2.16	Neutral Buoyancy	22
Figure 3.1	Buoyancy and Archimedes' Principle	23
Figure 3.2	(a) Buoyancy ; (b) Archimedes' Principle	24
Figure 3.3	Motor pump [5]	27
Figure 3.4	Polyvinyl Chloride (PVC) Pipe [6]	28
Figure 3.5	Solidworks 2011 software [7]	29
Figure 3.6	Proteus [8]	30
Figure 4.1	Flow chart of the Research	32
Figure 4.2	Block Diagram Process of Ballast Tank	33

FIGURE TITLE

PAGE

ix

Figure 4.3	Liquid Acid Battery	34
Figure 4.4	Body structure of ballast tank	37
Figure 4.5	Air storage tank	38
Figure 4.6	Isometric view of ballast tank	39
Figure 4.7	Isometric view of air storage tank	40
Figure 4.8	Schematic circuit for two direction motor	41
Figure 4.9	(a), (b), (c), (d) ; The different of layout using Circuit Wizard	42
Figure 4.10	(a) Top view of two direction motor circuit; (b) Back view of two	43
	direction motor circuit	
Figure 4.11	Complete ROV circuits	44
Figure 4.12	(a) Front view of complete ROV ; (b) Side view of complete ROV	44
Figure 4.13	(a) Back view of complete ROV ; (b) Top view of complete ROV	45
Figure 4.14	Isometric view of complete ROV with ballast tank	45
Figure 4.15	The mounted process for the ballast tank and pressure hull	46
Figure 4.16	The mounted process for air storage tank and camera	46
Figure 4.17	(a) and (b) ; The sealed process at pressure hull	47
Figure 4.18	(a) The sealed process on ballast tank; (b) The sealed process on air	48
	storage tank	
Figure 4.19	Controller	48
Figure 4.20	Circuit troubleshoot	55
Figure 5.1	ROV Free Body Diagram	61
Figure 5.2	Pressure Hull free body diagram	62
Figure 5.3	Ballast Tank free body diagram	64
Figure 5.4	Air compression tank free body diagram	66
Figure 5.5	Thruster free body diagram	67
Figure 5.6	How to determine weight of ROV	69
Figure 5.7	Mass for added with ROV	70

FIGURE TITLE

PAGE

Figure 5.8	(a) and (b); The leakage experiment for ROV	76
Figure 5.9	(a) and (b) ; Leakage indicator	77
Figure 5.10	Connection for leakage sensor plate inside pressure hull	77
Figure 5.11	Ballast tank testing	79
Figure 5.12	(a) Illustrate for the submerge; (b) Illustrate for the arise	80
Figure 5.13	Time over depth when filling the water	82
Figure 5.14	Time over depth when draining the water	82
Figure 5.15	Lab pool testing	85
Figure 5.16	(a) Illustrate for the submerge; (b) Illustrate for the arise	85
Figure 5.17	Time over depth when filling the water	88
Figure 5.18	Time over depth when draining the water	88
Figure 5.19	Swimming pool testing	91
Figure 5.20	(a) Illustrate for the submerge; (b) Illustrate for the arise	91
Figure 5.21	Time over depth when filling the water	94
Figure 5.22	Time over depth when draining the water	94

LIST OF APPENDICES

APPENDIX TITLE

PAGE

Appendix A Complete ROV view

104

CHAPTER 1

INTRODUCTION

This chapter describes the project overview, problem statement, project objectives, and project scope. Problem statement explains about engineering issues for this project. The project objective is the description of the expected result and goal of this project. Project scope explains about the limitations and boundaries on this project.

1.1 Project Overview

This project is about implementation of ballast tank on Remotely Operated Vehicle (ROV). This project is developing a prototype of ballast tank which are attached to ROV to demonstrate the basic operation of ballast tank as well as it operation in the water. The project is to show one of its operation principles which are it can submerge underwater and rise back up using remote control.

1.2 Problem Statement

Since thousand years ago, human tried to find ways to make their work easier. Thus, variety of techniques and inventions are created to reduce the human work. Nowadays, underwater is one of the popular sectors that human tried to explore. So that to reduce the risks to human life, underwater vehicles are the best choice over human divers because that vehicle can go down to greater depth and are able to stay there for the longer time. Underwater vehicles are used in the water for particular purpose. Remotely Operated Vehicle is the one type of underwater vehicle. It has much type of operations and involves many shapes. The main purpose of ROV is to replace the people is working in the underwater industry. Meanwhile the main obstacle in development of underwater vehicles is target of depth, control and stability in underwater. For deep underwater vehicle the most important one is that ballast tank. Without this, there is not possibility that the vehicle can submerged more depth. Thrusters only can submerge in a shallow water depends on speed of motor and weight of underwater vehicle. So ballast tank is introduced to underwater vehicle to submerge more deep. To ascertain its buoyancy, the underwater vehicle has ballast tank, which can be exchange provided with water or air. When the underwater vehicle is rise up, the ballast tank is provided with air and the underwater vehicle overall density is less than of the nearby water. When submerged, the ballast tank is filling up with water and the air in the ballast tank is vented from the underwater vehicle until its overall density is more than nearby water and the underwater vehicle start to sink. The problems with existing ballast tank system of ROV from international researches are typically too expensive and more complex system. It is because their body structure of ballast tank is made from good material, used higher technology system and totally waterproof, so that their price higher compared with local research. Other than that, researches from local from final year students of Universiti Teknologi Malaysia (UTM), their ballast tank project cannot fully function. The major problem thing that happen is the leaking of their ballast tank that makes it submerges and cannot rise again. This happen because the use of hardware that is not suitable to cover from high pressure. Besides that, they used syringes

2

as their type of ballast tank system and it is a poor system because is not efficient way to do this project because it can suck only a few amount of water. Other problem in their project is it have leakage at the combination point because they using more than one hardware to construct the ballast tank. If this project can develop the ballast tank which are can perform the basic operation of ballast tank as well as it operation in the water with a low cost and simple construction of ballast tank system, this will be the good news for the ROV developer.

1.3 Project Objective

As important as the other part, the project objective must be clearly defined so that the direction of the project always keeps in track. After clearly understand the problem statements, the purpose of this project is restricted to one major objective that hopefully can be achieved throughout project completion. The main objective of this ballast tank is:

- To design ballast tank that can be submerged underwater and rise back to the surface.
- To construct and control the ballast tank using water pump.
- To study performance of ballast tank in lab pool and swimming pool.

1.4 Project Scope and Limitation

In order to achieve the objectives of this project, there are several scopes and limitation that had been outlined. The scope of this project includes:

- Should be operating in underwater which the depth is below than 5 meter.
- The main source of power supply was come from the battery 12 V.
- To implement a suitable ballast tank for static diving of the ROV.
- To produce a low cost and simple construction system of ballast tank that can be operating in lab pool and swimming pool.

CHAPTER 2

LITERATURE REVIEW

In this chapter, a review of previous research project that are related of this project will be discussed. This kind of surveys done as one of the tools to have some ideas on how this project works based on other achievement and also to think about the advantages of proposed solution. This may help in problem solving skills and options required for design and develop the ballast tank.

2.1 Diving Technology

The dynamic and static diving is the ways to submerge. Dynamic diving boats always have positive buoyancy and they are submarines that inherently float. Meanwhile static diving submarines dive by allowing water into ballast tanks by altering their buoyancy. The boats start sinking when the buoyancy changed from positive to negative. These boats called static diving when its do not require speed. The main ballast tanks will fill up with water and then it will submerge. Then the buoyancy is completely changed with the trim tanks. Once underwater, the depth is controlled by the hydroplanes [1].

2.2 Static Diving

The main ballast tanks (MBT) can change the buoyancy of submarine by allowing water into it. They can be placed in different ways, which are inside the pressure hull, outside the pressure hull and in between the outer hull and the pressure hull [1].

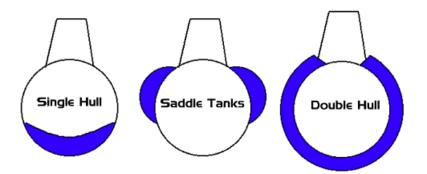


Figure 2.1 : The different locations of the main ballast tank [1].

To empty and fill, the MBT have two different ways. To rise up, the MBT are wholly filled with air and the MBT are closed on top of main vent valves. Meanwhile the ballast tanks are opened on top of vent valves to allow air get away from the MBT when to submerge.

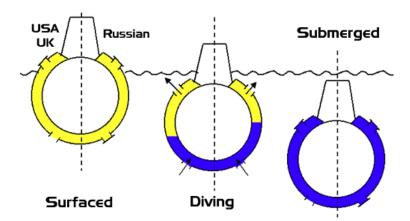


Figure 2.2 : The flooding of the main ballast tank [1].

To rise up, the pressure air was forced out by the water in the tank meanwhile to submerge more deep, high pressure air will uses to overcome the water pressure.

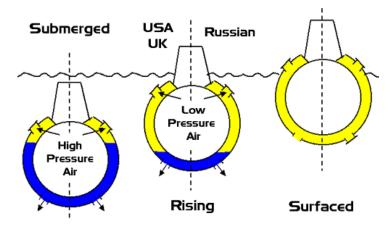


Figure 2.3 : The blowing of the main ballast tank [1].

2.3 Dynamic Diving

Perhaps the simplest form of diving technology is the dynamic diver. This has no functional ballast system at all, but rather uses its dive planes to "push" it under the surface of the water [3]. The hydroplanes control the depth of the submarine when it trimmed to neutral buoyancy. By using the hydroplanes, the submarine requires a speed to make a force on tilted planes. To maintain the submarine at the required depth, the fore hydroplanes are used exclusively because it more accurate to control the depth and at that location the bow mounted further from centre of gravity [1].

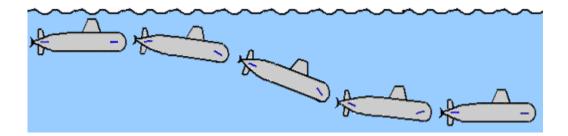


Figure 2.4 : The fore and aft dive planes are used during a submerge [1].

Highly nonlinear systems of equations with unsure difficulties coefficients and disturbances described the dynamics of UV are difficult to measure [10]. During the submerge process the aft hydro planes must in the neutral position meanwhile the hydroplanes is controlled by dive. To get the certain depth the aft planes are moved down and the fore planes up to level off. The fore planes are sustaining the depth by slow the speed. The hydroplanes usually control the depth for the most UV [11].

2.4 Types of Ballast Tank

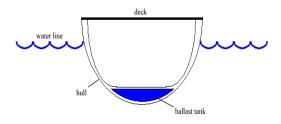


Figure 2.5 : Ballast tank

The ballast tank is a partition inside a boat or ship that holds water. Ballast tank is used to stabilize the ship when the ship begin to move [2]. There are many types of alternative for the ballast tank concept that can be applied to the submarine which are:

- (a) Vented ballast tank
- (b) Flexible ballast tank
- (c) Pressure ballast tank
- (d) Piston ballast tank
- (e) Membrane ballast tank
- (f) Bellow ballast tank
- (g) Gas operated ballast tank
- (h) Compressed air ballast tank

All the details about the types of ballast tank are summarized in Table 2.1.

2.4.1 Vented Ballast Tank.

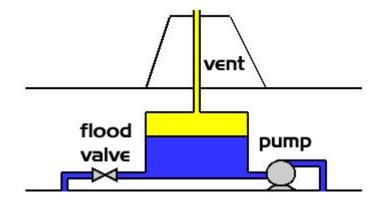


Figure 2.6 : Vented ballast tank [1]