KAJIAN TERHADAP REKABENTUK RAIFAL TEMPUR BARU UNTUK ANGKATAN TENTERA MALAYSIA

MOHD IDAIN FAHMY BIN ROSLEY

Laporan ini diserahkan kepada Fakulti Kejuruteraan Mekanikal sebagai memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Rekabentuk & Inovasi)

> Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

> > Mei 2007

"Saya akui bahawa saya telah mambaca karya ini dan pada pandangan saya karya ini adalah memadai dari segi skop dan kualiti untuk tujunan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Rekabentuk & Inovasi)"

Tandatangan

Nama penyelia

Tarikh

Thammel anuar SHAMSUDIN 8/5/2007

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya"

Tandatangan :

Nama penulis: MOHD IDAIN FAHMY BIN ROS LEY

Tarikh

. 08/05/2007

ABSTRACT

This project is to design a new assault rifle for Angkatan Tentera Malaysia. This study is carried out to improve the current assault rifle design by compiling the current designs and improved them. The new design should suitable for Angkatan Tentera Malaysia personnel. This new design also should withstand the rugged environment with high humidity, low maintenance and easy to carry by soldier. This project included the new design for assault rifle, the new mechanism and the materials that will use for production in future. This project also stated the process from zero until in finished and future suggestions.

KANDUNGAN

BAB	PERKARA	MUKA SURAT
1.0	PENGENALAN	1
	1.1 Sejarah raifal tempur di dunia dan	1
	di Malaysia	
	1.2 Objektif kajian	1
	1.3 Skop kajian	3
2.0	KAJIAN LATAR BELAKANG	5
	2.1 Pengenalan	5
	2.2 Katrij	6
	2.3 Jenis-jenis laras yang digunakan	8
	pada raifal tempur	
	2.3.1 Smoothbore - tanpa alur	8
	berpilin	
	2.3.2 <i>Rifling</i> – alur berpilin	10
	2.3.3 Poligonal	13
	2.4 Sistem am operasi raifal tempur	15
	2.4.1 Sistem Gatling	15
	2.4.2 Sistem Recoil	17
	2.4.3 Sistem Blowback	17

	2.4.4	Sistem gas	20
2.5	Sisten	n suapan peluru	22
	2.5.1	Sistem spring dan hopper	22
	2.5.2	Sistem belt	23
2.6	Sister	m masukan dan buangan	24
2.7	Sister	n konfigurasi	26
	2.7.1	Konfigurasi bull-pup	26
	2.7.2	Konfigurasi konvensional	27
	2.7.3	Konfigurasi carbine	27
2.8	Jenis-j	enis raifal tempur yang pernah	29
	diguna	akan oleh Angkatan Tentera	
	Malay	vsia (ATM) – retrospektif	
	2.8.1	Jungle carbine - Rifle No.5	29
		MK1 (Lee Enfield No.5	
		MK1 atau Lee Enfield	
		Jungle Carbine)	
	2.8.2	Streling Sub-Machinegun	32
	2.8.3	Heckler & Koch HK-33	34
	2.8.4	Fabrique Nationale (FN) Fusil	36
		Antomatique Leger (FAL)	
	2.8.5	M-16 A1	39
	2.8.6	Steyr AUG (Armee Universal	42
		Gewehr) A1	
	2.8.7	M4 A1	42

3.0	ME	TODOLOGi	46
	3.1	Mengetahui keperluan pengguna	46
	3.2	Spesifikasi sasaran	50
	3.3	Kajian latar belakang	51
	3.4	Penandaaras raifal tempur terbaik	53
		di dunia	
	3.5	Kajian terhadap rekabentuk -	57
		perbezaan di anatara raifal tempur	
		jenis konvensional, carbine dan	
		bull-pup	
		3.5.1 Konvensional - M-16 A2	57
		sebagai contoh	
		3.5.2 Carbine M4 sebagai contoh	59
		3.5.3 Bull-pup - Steyr AUG A1	61
		sebagai contoh	
	3.6	Rekabentuk konsep	63
		3.6.1 Pembangunan dan olahan	63
		rekabentuk konsep dan	
		alternatif yang lain	
		3.6.2 Analisis dan pemilihan	64
		konsep awal	
	3.7	Rekabentuk terperinci	68
	3.8	Pembangunan mock-up, model dan	70
		prototype	

4.0	ANALISIS, KEPUTUSAN DAN	71
	PERBINCANGAN	
	4.1 Pengkelasan besi, logam dan aloi	71
	4.2 Pemilihan bahan-bahan	71
	4.2.1 Pemiliham bahan untuk	73
	pemegang dan perumah	
	badan utama kiri dan	
	kanan	
	4.2.1.1 Sifat-sifat aluminium	73
	berdasarkan	
	pengkelasan yang	
	digunakan oleh ANSI	
	dan ASTM	
	4.2.3 Pemilihan bahan untuk butt-	74
	stock dan pemegang	
	hadapan kiri dan kanan	
	4.2.3.1 Jenis-jenis plastik	80
	4.3 Analisis dan keputusan	83
	4.3.1 Analisis komponen perumah	83
	utama kanan	
	4.3.1.1 Keputusan	84
	4.3.2 Analisis komponen perumah	88
	utama kiri	
	4.3.2.1 Kesimpulan	91

	4.4 Analisis komponen laras	92
	4.4.1 Keputusan	92
	4.4.2 Kesimpulan	96
	4.5 Analisis komponen pemegang	97
	hadapan kanan dan kiri	
	4.4.1 Keputusan	97
	4.4.2 Kesimpulan	97
	4.6 Analisis egnonomic menggunakan	100
	Catia melalui Egronomic Design	
	Analisys	
5.0	RUMUSAN, CADANGAN DAN	102
	KESIMPULAN	
	5.1 Cadangan	102
	5.2 Rumusan	104

SENARAI JADUAL

NO.	TAJUK	MUKA SURAT
JADUAL		
2-1	Data dan spesifikasi Jungle Carbine -	30
	Rifle No.5 MK1	
2-2	Data dan spesifikasi Sterling Sub-	32
	Machinegun	
2-3	Data dan spesifikasi HK-33	34
2-4	Data dan spesifikasi Fabrique Nationale	36
	(FN) Fusil Automatique Leger (FAL)	
2-5	Data dan spesifikasi M-16 A1	39
2-6	Data dan spesifikasi Steyr AUG (Armee	42
	Universal Gewehr) A1	
2-7	Data dan spesifikasi M4 A1 carbine	44
3-1	Jadual spesifikasi sasaran	50
3-2	Penanda aras semasa raifal tempur	53
	terbaik di dunia	
3-3	Kelebihan dan kekurangan raifal tempur	58
	konvensional M-16 A1	
3-4	Kelebihan dan kekurangan raifal tempur	60

	carbine M4 A1	
3-5	Kelebihan dan kekurangan raifal tempur	62
	bull-pup Steyr AUG A1	
3-6	Konsep yang telah diolah	65
3-7	Matriks pemilihan konsep untuk butt-	67
	stock	
3-8	Contoh matriks permarkahan konsep	67
4-1	Menunjukan jenis-jenis aluminium aloi	75
	dan spesifikasi	
4-2	Menunjukan sifat-sifat pembuatan dan	75
	aplikasi umum aluminium aloi yang	
	terpilih	
4-3	Menunjukan pengkelasan logam karbon	77
	serta pengkelasan berdasarkan AISI	
4-4	Menunjukan ciri-ciri mekanikal logam	77
	karbon dan aplikasinya	
4-5	Menunjukan jenis-jenis logam aloi	79
4-6	Menunjukan jenis-jenis logam karbon	79
	dan aloi serta spesifikasi	
4-7	Menunjukan jenis bahan dan berat	85
4-8	Menunjukan spesifikasi aluminium aloi	85
	AISI 1060	
4-9	Menunjukan jenis bahan dan berat	86

4-10	Menunjukan spesifikasi aluminium aloi	86
	AISI 3003	
4-11	Menunjukan jenis bahan dan berat	87
4-12	Menunjukan spesifikasi aluminium aloi	87
	AISI 6061	
4-13	Menunjukan perbandingan F.O.S bagi	88
	setiap aluminium aloi yang telah	
	dianalisis bagi komponen perumah	
	utama kanan	
4-14	Menunjukan perbandingan F.O.S bagi	91
	setiap aluminium aloi yang telah	
	dianalisis bagi komponen perumah	
	utama kiri	
4-15	Menunjukan jenis bahan dan berat	93
4-16	Menunjukan spesifikasi logam karbon	93
	tuang	
4-17	Menunjukan jenis bahan dan berat	94
4-18	Menunjukan spesifikasi logam aloi	94
4-19	Menunjukan jenis bahan dan berat	95
4-20	Menunjukan spesifikasi logam aloi	95
4-21	Menunjukan perbandingan F.O.S bagi	96
	setiap aluminium aloi yang telah	
	dianalisis bagi komponen laras	
4-22	Menunjukan jenis bahan dan berat	99

4-23 Menunjukan spesifikasi nyilon 6/10

99

SENARAI GAMBARAJAH

NO RAJAH	TAJUK	MUKA SURAT
2.1		
2-1	Keadaan di dalam meriam sebelum	6
	tembakan dilakukan	
2-2	Katrij peluru moden	7
2-3	Tanpa alir berpilin	8
2-4	Alur berlilin	10
2-5	Alur poligon	13
2-6	Sistem Gatling berfungsi	15
2-7	Sistem recoil berfungsi	17
2-8	Sistem blowback berfungsi	19
2-9	Sistem gas berfungsi	20
2-10	Sistem suapan belt	23
2-11	Sistem masukan dan buangan	25
2-12	Contoh raifal tempur bull-pup Enfield	26
	EM-2 dari Britain	
2-13	Contoh raifal tempur konvensional	27
	M19030 A1 Springfeild	
2-14	Contoh raifal tempur versi carbine M-4	28
	carbine	

2-15	Jungle carbine – rifle No.5 MK1 (Lee	29
	Enfield No.5 MK1 atau Lee Enfield	
	Jungle Carbine)	
2-16	Sterling Sub-machine gun	32
2-17	Raifal tempur Heckler & Koch HK-33	34
2-18	Raifal tempur Fabrique Nationale (FN)	36
	Fusil Automatique Leger FAL	
2-19	Ceraian Raifal tempur Fabrique	38
	Nationale (FN) Fusil Automatique	
	Leger FAL	
2-20	Raifal tempur M-16 A1	39
2-21	Ceraian raifal tempur M-16 A1	41
2-22	Raifal tempur Steyr AUG (Armee	42
	Universal Gewehr) A1	
2-23	Raifal tempur M-4 A1 carbine	44
3-1	Carta alir proses metodologi	48
3-2	Contoh raifal tempur konvensional M-	57
	16 A2	
3-3	Contoh raifal tempur carbine M-4	59
3-4	Contoh raifal tempur bull-pup Steyr	61
	AUG A1	
3-5	Gambarajah proses rekabentuk konsep	63
	berlaku	

3-6	Lakaran konsep akhir raifal tempur	68
3-7	Lukisan terperinci ceraian isomatrik	69
	raifal tempur baru	
3-8	Lukisan terperinci raifal tempur	69
4-1	Menunjukan bagaimana daya dikenakan	83
	pada permukaan komponen	
4-2	Menunjukan nilai F.O.S bagi aluminium	85
	AISI 1060	
4-3	Menunjukan nilai F.O.S bagi aluminium	86
	AISI 3003	
4-4	Menunjukan nilai F.O.S bagi aluminium	87
	AISI 6061	
4-5	Menunjukan bagaiamana daya dan suhu	88
	dikenakan pada permukaan dan kebuk	
	komponen	
4-6	Menunjukan nilai F.O.S bagi aluminium	89
	aloi AISI 1060	
4-7	Menunjukan nilai F.O.S bagi aluminium	90
	aloi AISI 3003	
4-8	Menunjukan nilai F.O.S bagi aluminium	90
	aloi AISI 6061	
4-9	Menunjukan bagaiamana daya dan suhu	92
	dikenakan pada permukaan dan alur di	

	dalam laras	
4-10	Menunjukan nilai F.O.S bagi logam	93
	karbon	
4-11	Menunjukan nilai F.O.S bagi logam	94
	karbon tuang	
4-12	Menunjukan nilai F.O.S bagi logam aloi	95
4-13	Menunjukan bagaiamana daya dan suhu	97
	dikenakan pada permukaan bagi kedua-	
	dua komponen pemegang hadapan kana	
	dan kiri	
4-14	Menunjukan nilai F.O.S bagi nylon 6/10	98
	bagi pemegang hadapan kanan	
4-15	Menunjukan nilai F.O.S bagi nylon 6/10	98
	bagi pemegang hadapan kiri	
4-16	Menunjukan spesifikasi model manusia	100
	yang telah dipilih bersesuaian dengan	
	saiz anggota Angkatan Tentera Malaysia	
	iaitu 1.6883m	
4-17	Menunjukan spesifikasi model manusia	101
	memegang raifal tempur di dalam	
	keadaan berdiri dan berjalan	
4-18	Menunjukan spesifikasi model di dalam	101
	keadaan posisi bersedia	

SENARAI LAMPIRAN

LAMPIRAN	TAJUK	MUKA SURAT
Α	Keputusan soal selidik	106
В	Ceraian raifal tempur secara isometrik	113
С	Pandangan sisi, hadapan dan atas isometrik	114
D	Ceraian bahagian pemegang hadapan secara isometrik	115
E	Ceraian bahagian badan secara isometrik	116
F	Ceraian bahagian <i>butt-stock</i> secara isometrik	117
G	Olahan konsep untuk perumah utama	118
Н	Olahan konsep untuk butt-stock	118
I	Olahan konsep untuk pemegang hadapan	119
J	Olahan konsep untuk sistem gas	120

BAB 1

PENGENALAN

1.1 Sejarah raifal tempur di dunia dan Malaysia.

Penggunaan raifal tempur di dunia dimulakan oleh Nazi Jerman dengan pengenalan sejenis senjata api baru yang dikenali sebagai Sturmgewehr 44 yang akhirnya menjadi asas kepada raifal tempur yang ada pada hari ini. Sturmgewehr 44 ini mempunyai perbezaan dengan raifal ketenteraan ketika itu seperi M1 Garand, M14 atau K98k, yang mana ia bersaiz lebih kecil. Raifal tempur biasanya mempunyai mekanisme yang membenarkan pengguna memilih untuk melepaskan tembakan satu das, gugusan atau automatik. Selain itu, raifal tempur juga mempunyai mempunyai ciri-ciri tambahan yang memperlihatkan kelebihan "ancaman", seperti bayonet, pengedap percikan dan jumlah amunisi *magazine* yang banyak.

Jurutera Soviet ketika itu, Mikhail Kalashnikov telah berjaya mengaplikasikan konsep tersebut kepada AK-47, yang mana telah menjadi raifal tempur yang paling berjaya di dunia. Manakala di Amerika Syarikat pula, John Garand, pencipta M1 Garand yang telah digunakan oleh pihak tentera Amerika semasa Perang Dunia Kedua juga menggunakan konsep yang sama, telah mencipta M14, yang kemudiannya digunakan oleh pihak yang sama hingga 1960-an.

Disebabkan kesan *recoil* M14 terhadap ketepatan semasa tembakan sepenuhnya automatik dilakukan, ia telah digantikan dengan raifal tempur baru, AR-15 yang telah dicipta oleh Eugene Stoner. Dengan pengenalan raifal tempur baru ini, secara tidak langsung telah memberikan signifikasi tersendiri kepada penciptaan raifal tempur akan datang di mana pengenalan penggunaan kaliber yang lebih kecil, 0.223-kaliber. Sebelum penggunaan kaliber 0.223 ini, penggunaan kaliber berkuasa tinggi 0.30-kaliber digunakan secara meluas. Dengan penggunaan kaliber bersaiz baru ini, raifal tempur telah menjadi lebih ringan dan kecil serta kesan *recoil* yang rendah. Ini secara tidak langsung mempengaruhi kadar ketepatan tembakan. Pihak ketenteraan kemudianya menukar dari AR-15 kepada M-16 yang turut digunakan oleh Angkatan Tentera Malaysia.

Penggunaan raifal tempur di dalam Angkatan Tentera Malaysia bermula sejak dari zaman selepas Perang Dunia Kedua lagi. Pada ketika itu, Angkatan Tentera Malaysia menggunakan sistem raifal pelbagai jenis seperti Jungle Carbine yang diwarisi dari pihak British. Kemudian secara beransur-ansur, raifal tersebut digantikan dengan Sterling SMG dan SLR semasa darurat di Tanah Melayu. Setelah penggunaan raifal tersebut ditamatkan, Angkatan Tentera Malaysia menggunakan raifal tempur buatan Heckler & Koch, HK-33 sehingga 1970-an sebelum digantikan dengan penggunaan M-16 A1 dan Steyr AUG A1 pada tahun 1989. Paling terbaru ialah pada pameran Defence Services Asia 2006 atau lebih akronimnya DSA, Angkatan Tentera Malaysia melalui Kementerian Pertahanan telah bersetuju untuk mengantikan raifal Styer AUG A1 dengan M-4 carbine dengan penghantaran awal sebanyak 14,000 laras melalui firma SMEO.

Secara tersirat, jika diperhatikan, dari zaman dahulu hingga kini, Angkatan Tentera Malaysia masih menjadi negara pengguna sedangkan negara-negara lain seperti jiran kita, Singapura dan Indonesia telah menghasilkan raifal meraka sendiri. Walaupun kita boleh berbangga dengan firma Syarikat Malaysia Explosives Ordinans Sdn. Bhd.

atau SMEO, namun firma tersebut hanya menyediakan pemasangan dan pembuatan secara berlesen senjata api firma-firma antarabangsa lain seperti Steyr dan Colt. Sepatutnya dengan teknologi dan kemudahan yang ada Malaysia melalui firma SMEO sebagai contoh, sepatutnya mampu mengeluarkan raifal tempur yang asas sendiri sekurang-kurangnya. Kita lihat Singapura sebagai contoh, walaupun tidak sampai 40 tahun merdeka dari Malaysia, teknologi ketenteraan mereka jauh lebih maju dari Malaysia. Maka di sini, dengan adanya kajian Projek Sarjana Muda ini adalah di harap ia dapat menjadi pemangkin kepada penciptaan raifal tempur buatan Malaysia hasil titik peluh anak watan sendiri.

1.2 Objektif kajian

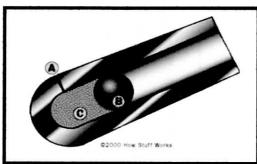
Di antara objektif kajian Projek Sarjana Muda ialah:

- a. Memahami perbagai jenis rekabentuk raifal tempur di dunia.
- Mengkaji sistem bagaimana sistem raifal tempur berfungsi dari sistem operasi, sistem mekanisma hingga ke sistem suapan.
- c. Mereka bentuk raifal tempur baru untuk kegunaan pasukan keselamatan.

1.3 Skop kajian

Di antara skop kajian Projek Sarjana Muda ialah:

- Menganalisis rekabentuk raifal tempur di dunia.
- Melakukan rekabentuk baru dari sistem operasi, sistem mekanisma hingga ke sistem suapan.


c. Menghasilkan rekabentuk dan prototype raifal tempur yang terbaik bagi kegunaan pasukan keselamatan di Malaysia terutamanya Angkatan Tentera Malaysia.

BAB 2

KAJIAN LATAR BELAKANG

2.1 Pengenalan

Untuk memahami bagaimana raifal tempur berfungsi, adalah lebih baik untuk mengenali dahulu apakah itu senjata api secara umum. Amnya hampir kesemua senjata api berdasarkan satu konsep yang mudah: penggunaan bahan letupan bagi menghasilkan daya untuk menolak dan melancarkan projectile melalui sepucuk laras. Paling awal dan paling mudah, sebagai contoh bagaimana konsep ini diaplikasikan ialah meriam. Meriam adalah terdiri dari satu tiub besi dengan salah satu daripada lubangnya dihujungnya ditutup dan satu lagi dibuka. Sebelum tembakan dilakukan dengan, serbuk letupan (C) (campuran arang, belerang dan potassium nitrat) dimasukan dahulu dan kemudian barulah peluru meriam (B). Serbuk letupan dan peluru meriam akan berada di dalam breech, bahagian belakang bore, ruang terbuka di dalam meriam. Untuk menyalakan meriam tersebut, fuse (A) dinyalakan dan akan melalui lubang sebelum ia sampai ke breech di mana serbuk letupan dan peluru meriam berada.

Gambarajah 2-1: Keadaan dalam meriam sebelum tembakan dilakukan

Apabila serbuk letupan telah dinyalakan, ia akan terbakar secara pantas. Semasa proses pembakaran ini berlaku, gas panas akan terhasil dengan banyaknya. Gas panas ini akan menghasilkan tekanan yang amat tinggi dari tekanan atmosfera dan akhinya akan melancarkan peluru meriam tersebut keluar melalui laras.

2.2 Kartrij

Inovasi penting lain di dalam sejarah senjata api ialah penciptaan katrij peluru. Bersifat mudah, katrij adalah kombinasi projectile (peluru), propellent (serbuk peledak sebagai contoh) dan primer (penutup letupan). Semuanya terkandung di dalam satu pakej. Tidak dapat dinafikan, penciptaan katrij merupakan suatu kejayaan dan menyumbangkan kepada apa yang ada pada hari ini. Ini terbukti kerana ianya merupakan keperluan asas kepada hampir kesemua senjata api yang ada pada hari ini.