DEVELOP A 5.8GHz CHEBYSHEV BANDPASS FILTER USING MICROSTRIP TECHNOLOGIES

CHE KAMARIAH BINTI BABJAN

This report is submitted in partial fulfillment of requirements for the award of Bachelor Degree of Electronic Engineering (Industrial Electronic Engineering) with honours

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

MEI 2007

C Universiti Teknikal Malaysia Melaka

MEMBANGUNKAN PENAPIS LULUS JALUR JENIS CHEBYSHEV PADA 5.8 GHz MENGGUNAKAN TEKNOLOGI JALUR MIKRO

CHE KAMARIAH BINTI BABJAN

Laporan ini dikemukakan untuk memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Industri) dengan kepujian

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

MEI 2007

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

ŧ

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek	:	Develop a 5.8 GHz Chebyshev Bandpass Filter Using Microstrip Technologies
Sesi Pengajian	:	2006/2007

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan ($\sqrt{}$):

	SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
\checkmark	TIDAK TERHAD	

	Disahkan oleh:
Frand	\mathbb{A}
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
	CHAIRULSYAH WASLI
Alamat Tetap: Di Sebelah 616, Jalan Hassan Abbas, 11050, Teluk Bahang, Pulau Pinang	Lecturer Faculty Electronics and Computer Engineering (FKEKK) Universiti Teknikal Malaysia Melaka (UTeM),
	Lecked Bag 1200, Ayer Keroh, 75450 Melaka
Tarikh: 4 May 2007	Tarikh:

"I hereby declare that the material presented in this thesis are the result of my own work except as cited as reference"

Zaund Signature:

Author : Che Kamariah Binti Babjan

Date : May 2007

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya telah saya jelaskan sumbernya."

Tandatangan :....

Nama Penulis : Che Kamariah Binti Babjan

Tarikh : May 2007

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours."

Signature

Supervisor's Name : Mr. Chairulsyah Wasli

Date

: May 2007

"Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) dengan kepujian."

Tandatangan

M :...

Nama Penyelia

: En. Chairulsyah Wasli

Tarikh

: May 2007

To my love, my lovely mum, dad and to all my family

ACKNOWLEDGEMENT

First of all, I would to thanks to ALLAH SWT, for helping and blesses me through all the obstacles that I encountered while doing this project. Without blesses from ALLAH SWT, I would not think that I can finish this PSM II project.

I also would to thank to my supervisor, Mr. Chairulsyah Wasli for his support and guidance while doing this project. His idea and knowledge have helped me a lot in doing this project. He provides a motivation and enthusiastic atmosphere during the discussion we had.

Also appreciation to my family because they encouragement and never ending support. Their support and lovely companionship is another important source of strength for me. To all my friends and classmate, thanks for all of the idea, teach, and wishes. Our hard effort while doing the research is not useless.

Lastly, I would like to acknowledge every individual who give me a helping hand in order to achieve this accomplishment.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

This thesis provides the reader with a detailed and comprehensive study of theory, design, fabrication, result and problem encountered in the designing bandpass RF microwave filter. The approaches used to achieve this project are through literature survey, dimensional calculation and computer software simulation. These approaches are used to analyze the characteristics and the required specification before fabricating the microstrip bandpass filter, computer simulation is the best technique to get the solution because it is fast and economical. The bandpass filter has several types and design. There are parallel-coupled microstrip bandpass filters, edges microstrip bandpass filter and hairpin microstrip bandpass filter. The filter design is concentrated on the parallel-coupled bandpass microstrip filter operating at 5.8GHz by using FR4 as a substrate. To achieve this purpose, computer software, Microwave Office 2004 is used to analyze the characteristics of the microstrip bandpass filter and to determine its suitable parameters. The Emsight Simulator is developed by using a technique called "Method of Moment (MoM)". Meanwhile, insertion loss measurement is one of the critical measurements that have been used to analyze performance quality. With this method, it can find out whether the parallel-coupled microstrip bandpass filter can be design in good condition or not.

ABSTRAK

Tesis ini memberi maklumat secara terperinci kepada pembaca mengenai teori, rekabentuk, proses fabrikasi, keputusan dan permasalahan yang mungkin wujud dalam proses merekabentuk penapis lulus jalur gelombang mikro. Pendekatan yang telah dilaksanakan untuk menjayakan projek ini ialah menggunakan kaedah kajian secara ilmiah, pengiraan dimensi, dan simulasi perisian komputer. Ketiga-tiga pendekatan ini adalah perlu untuk menganalisa sama ada ciri-ciri penapis lulus jalur memenuhi spesifikasi yang diperlukan sebelum proses fabrikasi dilakukan. Simulasi perisian komputer adalah cara penyelesaian yang terbaik kerana ianya cepat dan ekonomik. Rekabentuk penapis lulus jalur mempunyai pelbagai jenis dan bentuk. Antaranya penapis lulus jalur ganding selari, penapis lulus jalur sisi, dan penapis lulus jalur penyepit rambut atau "hairpin". Rekabentuk penapis ini ditumpukan kepada penapis jenis penapis lulus jalur gandingan selari yang beroperasi pada frekuensi tengah 5.8GHz dengan menggunakan bahan dielektrik FR4. Untuk tujuan ini, perisian komputer 'Microwave Office 2004' telah digunakan untuk menganalisa ciri-ciri dan seterusnya menentukan jenis parameter-parameter penapis lulus jalur yang sesuai untuk proses rekabentuk. Emsight Simulator bagi perisian ini menggunakan teknik "Method of Moment (MoM)". Sementara itu, kaedah kehilangan penyisipan digunakan sebagai salah satu cara untuk menganalisa kualiti perlaksanaan. Dengan cara ini dapat menetukan sama ada penapis lulus jalur gandingan dapat direkabentuk dengan baik atau sebaliknya.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE OF PROJECT	i
	DECLARATION	iii
	DEDICATION	vii
	ACKNOWLEDGEMENTS	viii
	ABSTRACT	ix
	ABSTRAK	Х
	LIST OF TABLES	xi
	LIST OF FIGURES	XV
	LIST OF TABLE	xvi
	LIST OF TERM	xvii

I INTRODUCTION

1.1	INTRODUCTION	1
1.2	PROJECT OBJECTIVE	2
1.3	PROBLEM STATEMENT	2
1.4	SCOPE OF WORK	3
1.5	PROJECT METHODOLOGY	4

II LITERATURE REVIEW

2.1	BEYOND 3G: FORTH GENERATION	
	WIRELESS NETWORK	5
2.2	FILTER	б

2.3	TYPE	S OF FILTER	6
2.4	PASS	IVE FILTER	8
	2.4.1	Introduction	8
	2.4.2	Types of Passive Filter	10
	2.4.3	Basic Low Pass Filter	13
	2.4.4	Basic High Pass Filter	14
2.5	BANI	DPASS FILTER	15
2.6	FREQ	UENCY RESPONSE TYPES OF FILTER	17
	2.6.1	Frequency Response of Butterworth Filter	17
	2.6.2	Chebyshev Filter	18
	2.6.3	Bessel Filter	19
	2.6.4	Elliptic Filter	19
2.7	MICR	OSTRIP	22
	2.7.1	Definitions of Microstrip	22
	2.7.2	Microstrip transmission line Theory	23
	2.7.3	Parallel Coupled Microstrip	24
	2.7.4	Substrate materials	25
	2.7.5	Common Substrate Material	25
2.8	INTR	ODUCTION TO MICROWAVE	28
	2.8.1	Application of Microwave	31

III PPROJECT METHODOLOGY

3.4	TESTING	34
3.3	FABRICATION	34
3.2	SIMULATION	33
3.1	THEORY	33

IV DEVELOPMENT OF PROJECT

4.1	INTRODUCTION	35
4.2	PARALLEL COUPLED FILTER DESIGN	36

C Universiti Teknikal Malaysia Melaka	C Universiti	Teknikal	Malaysia	Melaka
---------------------------------------	--------------	----------	----------	--------

SIMULATION ANALYSIS

5.1	EXPECTED RESULT	46
	5.1.1 Simulations (Microwave EM Struc	cture) 46
	5.1.2 Actual Layout (Corel Draw 12)	48
5.2	ANALYSIS RESULT	49

VIIFABRICATION PROCESS58

7.1	LAYOUT PRINTING	58
7.2	UV	59
7.3	DEVELOPER	60
7.4	ETCHING PROCESS	61
7.5	STRIPPER	62
7.6	CUTTING AND SOLDERING	62

VIII TESTING

8.1	INTRODUCTION TO NETWORK ANALYZER	63
8.2	MEASUREMENT RESULT	64
8.3	CALIBRATION AND S-PARAMETER	
	MEASUREMENT WITH THE NETWORK	
	ANALYZER	67

IX

DISCUSSION AND CONCLUSION

9.1	DISCUSSION	73
9.2	CONCLUSION AND SUGGESTION	76

REFERENCE

76

APPENDIX	Α	FLOW CHART FOR THE ENTIRE PROGRESS	80	
APPENDIX	В	CONDUCTIVITIES FOR SOME MATERIALS		
APPENDIX	С	DIELECTRIC CONSTANTS AND LOSS		
		TANGENTS FOR SOME MATERIALS	82	
APPENDIX	D	CALCULATION TO DETERMINE THE		
		ORDER OF THE FILTER	83	
APPENDIX	Ε	SIMULATION BY MATLAB TO		
		DETERMINE ORDER OF FILTER	84	
APPENDIX	F	SIMULATION BY MATLAB TO		
		COMPUTE THE VALUE OF ELEMENT	86	
APPENDIX	F	THE RESULT OF THEIR ELEMENT	88	
APPENDIX	G	SMITH CHART S ₁₁ AND S ₂₁	92	
APPENDIX	Η	ACTUAL SIZE LAYOUT FOR		
		PARALLEL COUPLED BANDPASS FILTER	93	
APPENDIX	Ι	VIEW OF PARALLEL COUPLED		
		BANDPASS FILTER	94	

LIST OF FIGURES

FIGURES	TITLE	PAGE
2.1	a) T-Network (b) Electrical Circuit	10
2.2	Ideal Response of Various Filters (a) Low Pass (b) High Pass	
	(c) Band Pass (d) Band Stop (e) All Pass	11
2.3	Basic Low Pass Filter and its Frequency Response	
	(a) Low Pass Filter (b) Frequency Response	13
2.4	a) H.P. Filter Circuit (b) Frequency Response	14
2.5	Frequency Response of a Band Pass Filter	16
2.6	Frequency Response of Various Filters	17
2.7	Frequency Response Comparison of 4th Order Butterworth,	
	Chebyshev and Ideal Response	18
2.8	Group Delay (Filter Characteristics)	19
2.9	Geometry. (b) Cross sectional view with electric and magnet	ic
	field lines.	23
2.10	(a) Transmission Line of Length (t) (b) Primary constants	
	assigned to a lumped element model of a transmission line.	24
2.11	Cross-sectional view of a parallel coupled microstrip	25
2.12	The electromagnetic spectrum	30
4.1	Attenuation versus normalized frequency for 0.5 dB ripple	
	low-pass filter prototype [9]	37
4.2	Low-pass filter prototype	39
4.3	Bandpass filter prototype	39
4.4	Dimension of Coupled Line using ADS software	42
4.5	Microstrip Structure of BPF	43
4.6	Circuit for coupled line parameters	44

C Universiti Teknikal Malaysia Melaka

4.7	Layout of parallel coupled bandpass filter	45
4.8	Close up view of MLin 1	45
5.1	Substrate Parameter Setup	47
5.2	Box Dimension Setup	47
5.3	EM Structure Layout	48
5.4	Actual Layout	49
5.5	(a) Filter response before adjust coupled line	
	(b) Filter response after adjust coupled line	50
5.6	(a) The result before adjust coupled line (b) The result after	
	changing the coupled line length	52
5.7	(a) The result before adjust coupled line (b) The result after	
	changing coupled line width	53
5.8	(a) The result before adjust coupled line (b) The result after	
	changing coupled line space	54
6.1:	The final result for parallel-coupled bandpass filter	57
7.1	Circuit Drawing Transition to Transparency	59
7.2	Laminated PCB board with thin film and circuit drawing	59
7.3	UV Exposure Process	60
7.4	PCB Board Soaking Process	61
7.5	Etching Process	61
7.6	Fabricate Circuit	62
8.1	Network Analyzer connects to Parallel Bandpass Filter	63
8.2	Return Loss $[S_{11}]$, and Insertion Loss $[S_{21}]$ (Sample 1)	64
8.3	Return Loss $[S_{11}]$, and Insertion Loss $[S_{21}]$ (Sample 2)	65
8.4	Return Loss $[S_{11}]$, and Insertion Loss $[S_{21}]$ (Sample 3)	66

LIST OF TABLES

TABLES	TITLE	PAGE
2.1	Summary of Filter Response Characteristics	21
4.1	Bandpass Filter Design Specification	
4.2	FR4 Substrate's Properties	36
4.3	Parameter of Parallel-Coupled Filter	40
4.4	Physical Dimension of Coupled Line	43
5.1	Layer Setup	47
5.2	Bandpass Filter Design Specification	49
5.2	FR4 Substrate's Properties	49
6.1	Bandpass Filter Design Specification	56
6.2	FR4 Substrate's Properties	57
9.1	Comparison of measured and calculation results	75
9.2	Measurement sample results of parallel coupled microstrip	
	bandpass filter	75

LIST OF TERM

А	-	Worsening
BW	-	Bandwidth
fo	-	Center Frequency
f_L	-	Lower Cut-off Frequency
f_H	-	Higher Cut-off Frequency
Z _{in}	-	Input Impedance
Zo	-	Characteristics Impedance
R _{in}	-	Input Resistance
R _o	-	Characteristic Resistance
ε _r	-	Relative Dielectric Constants
ϵ_{eff}	-	Dielectric
ε _o	-	Wavelength
h	-	Substrate Height
t	-	Thickness
L	-	Length
W	-	Width
S	-	Space
Gaps	-	Internal Between
Lumped	-	Lumped of Earth
Stub	-	A Stump
PCB	-	Printer Board Circuit

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

This project provides the reader with the detail and comprehensive study of theory, design, fabrication, result and problem encountered in the designing bandpass RF microwave filter. The approaches used to achieve this project are through literature survey, dimensional calculation and computer software simulation. It also approaches used to analyze the characteristic and the required specification before fabricating the microstrip bandpass filter.

Computer simulation is the best technique to get the solution because it is fast and economical. Microwave Office 2004 is the software that used to get the solution of the characteristics of the microstrip bandpass filter and to determine its suitable parameters. The Emsight Simulator is developed by using a technique called "Method of Moment (MoM)".

This research generally is divided into three stages which includes literature review and dimensional calculation followed by software simulation and lastly fabrication, testing and analysis of the results. The filter design is concentrated on the parallel-coupled bandpass microstrip filter operating at 5.8GHz by using FR4 as a substrate.

1.2 PROJECT OBJECTIVE

The technology of filter in microwave is widely used and become one of the important technologies in the new era. To develop a 5.8GHz Chebyshev Bandpass Filter by using microstrip technologies applications is one of the ways to upgrade the communications system.

The objective for the research is:-

- 1. To conduct research and understand the existing literature on microstrip analysis and synthesis equations.
- 2. To conduct research and understand the existing literature on microstrip low pass and high pass filter design.
- 3. To develop a 5.8GHz Chebyshev bandpass filter by using microstrip technologies by using 'Microwave Office 2004' to simulate the microwave circuit.
- 4. To research how to design the microwave filter by using microstrip transmission line.
- 5. How to test the fabrication circuit of microstrip filter.

1.3 PROBLEM STATEMENT

The cost for a bandpass filter is very expensive. These projects try to make how cost for bandpass filter. The accurate high quality, bandpass filter is to take long time to build. This project try to make faster and simple way to build bandpass filter.

1.4 SCOPE OF WORK

In this new era of technology, all the application of communication system used the microwave radio frequency widely in Japan, United State America, Great Britain and each other. Malaysia is one of the countries that try to reach the technology.

This project to develop a 5.8GHz chebyshev bandpass filter by using microstrip technologies means that, this research is focus in super high frequency (SHF) and the specification frequency for bandpass filter at frequency 5.8GHz.

There are six parts scope of work:-

- 1. Study about microstrip filter, microstrip transmission line and electromagnetic waveform. In this part, it need to calculate the dimensions value of filter, characteristic of dielectric, characteristic of impedance and frequency reception to make sure the filter design is perfect and success.
- 2. Develop the equations that related with the research to calculate the dimensions of microstrip filter, characteristic of impedance, the relative permeability of dielectric material and one of the microstrip filter layout.
- 3. By using the software such as 'Microwave Office 2004' the expected result for the filter can be earned. Simulation process is one of the engineering methods to get the expected result without using any material that costly.
- 4. When obtain an applicable circuit from the simulation, fabricate can be started.
- 5. Test the fabricate filter circuit after the whole process is done.
- 6. Compare the result with the expected result in simulation.

1.5 **PROJECT METHODOLOGY**

At the first, start planning the project with the literature review for the related journal, books and all information from internet, magazine and each other. With the all information, develop an equation to get the expected result by simulation. Try to run the simulation to look their expected result before fabricate the filter circuit. If not, back to simulation once again.

If the expected result shows the accurate value that we want, fabricate the filter and then test it. Then measure and calculate the result to compare with the simulation result. If the fabricate result shows the perfect result it seem the project is successfully done. If not, back to fabricate and then test it again until we get the accurate result. Lastly, at the end of the research the whole process of the project will be written into thesis. Refer Gantt chart in Appendix A.

CHAPTER II

LITERATURE REVIEW

2.1 BEYOND 3G: FORTH GENERATION WIRELESS NETWORK

At the end of the 1940's, the first radio telephone service was introduced, and was designed to users in cars to the public land-line based telephone network. Then, in the sixties, a system launched by Bell Systems, called IMTS, or, "Improved Mobile Telephone Service", brought quite a few improvements such as direct dialing and more bandwidth. The very first analog systems were based upon IMTS and were created in the late 60s and early 70s. The systems were called "cellular" because large coverage areas were split into smaller areas or "cells", each cell is served by a low power transmitter and receiver.

For 1G and 2G standards, bandwidth maximum is 9.6 kbit/sec, This is approximately 6 times slower than an ISDN (Integrated services digital network). Rates did increase by a factor of 3 with newer handsets to 28.8kbps. This is rarely the speed though, as in crowded areas, when the network is busy, rates do drop dramatically. Third generation mobile, data rates are 384 kbps (download) maximum, typically around 200kbps, and 64kbps upload. These are comparable to home broadband connections.

Fourth generation mobile communications will have higher data transmission rates than 3G. 4G mobile data transmission rates are planned to be up to 100

5