

TECHNICAL UNIVERSITY of MALAYSIA MALACCA

Design and Development of Computer Program to Determine 2D Robot Workspace and Safe Working Area

Thesis submitted in accordance with the requirements of the Technical University of Malaysia, Melaka for the Bachelor Degree of Manufacturing Engineering in Robotic and Automation

By

Nor Ismawati binti Natilan

Faculty of Manufacturing Engineering April 2007

🔘 Universiti Teknikal Malaysia Melaka

UNIVE	RSITI TEKNIKAL MAL	AYSIA MELAKA
	BORANG PENGE	SAHAN STATUS TESIS*
	AND DEVELOPMENT C NORKSPACE AND SAF	OF COMPUTER PROGRAM TO DETERMINE 2D
SESI PENGAJIAN:		
Saya	NOR ISMAW	ATI BINTI NATILAN
0	versiti Teknikal Malay	jana/Doktor Falsafah) ini disimpan di ysia Melaka (UTeM) dengan syarat-syarat
 Perpustakaan untuk tujuan j Perpustakaan 	Universiti Teknikal Ma pengajian sahaja. dibenarkan membuat si pengajian tinggi.	eknikal Malaysia Melaka. alaysia Melaka dibenarkan membuat salinan t salinan tesis ini sebagai bahan pertukaran
SULIT	atau keper	ungi maklumat yang berdarjah keselamatan ntingan Malaysia yang termaktub di dalam SIA RASMI 1972)
TERHA	D (Mengandu	ungi maklumat TERHAD yang telah ditentukan nisasi/badan di mana penyelidikan dijalankan)
√ TIDAK	TERHAD	Disahkan oleh:
(TANDATA	NGAN PENULIS)	(TANDATANGAN PENYELIA)
Alamat Tetap: No. 26, Jalan Ke Taman Kemunin Selangor	emuning 9, Ig,42700 Banting,	Cop Rasmi:
Tarikh: <u>14th Ma</u>	<u>y 2007</u>	- Tarikh:
ertasi bagi pengajian Jika tesis ini SULIT at	i secara kerja kursus dan au TERHAD, sila lampirka	oktor Falsafah dan Sarjana secara penyelidikan, atau n penyelidikan, atau Laporan Projek Sarjana Muda (P an surat daripada pihak berkuasa/organisasi berkena esis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DESIGN AND DEVELOPMENT OF COMPUTER PROGRAM TO DETERMINE 2D ROBOT WORKSPACE AND SAFE WORKING AREA

NOR ISMAWATI BINTI NATILAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation). The members of the supervisory committee are as follows:

Main supervisor Faculty of Manufacturing Engineering

.....

DECLARATION

I hereby, declare this thesis entitled "Design and Development of Computer Program to Determine 2D Robot Workspace and Safe Working Area" and submitted to Universiti Teknikal Malaysia, Melaka as fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering.

Signature	:	
Author's Name	:	Nor Ismawati binti Natilan
Date	:	

ABSTRACT

Nowadays, industrial robots are widely used in manufacturing industries that is brought in a new challenge of safety aspects for workers and robots. Injury rates may increase without a proper safety system for industrial robot workspace. In addition, this project is design and develops with the purpose of decreasing the injury rates happened in the industries. The main objective of this project is to design and develop a computer program to determine 2D robot workspace and safe working area. In this project, the emphasis is safety and several aspects need to be considered during installation the industrial robot for ensure the safety in the future. The specific variables and dimensions are needed to be considered during installation the industrial robot and determine the robot work envelope.

In order to design and develop a computer program to determine 2D robot workspace and safe working area, a research and study on industrial robot and its specification are carried out and described in this report briefly. Either than that, a study on a computer program and drawing software is done to enhance a knowledge and information used in this project. The results of research and study are chose and will be use as a reference in designing and developing a computer program to determine 2D robot workspace and safe working area. AutoCAD is chose to create 2D robot workspace while Microsoft Visual Basic.NET is choose to program a computer program to determine 2D robot workspace and safe working area. User interface is a result of this project where user can interact with it to get their need.

ABSTRAK

Pada masa ini, robot industri telah digunakan secara meluas dalam industri pembuatan di mana ianya telah membawa cabaran atau impak baru dari segi aspek keselamatan untuk pekerja dan robot itu sendiri. Kadar kemalangan akan meningkat tanpa sistem keselamatan yang cukup untuk ruang kerja robot industri. Oleh itu, projek ini direka bertujuan untuk mengurangkan kadar kemalangan yang berlaku di dalam industri. Objektif utama projek ini adalah untuk merekabentuk dan memperkembangkan program komputer dalam menentukan ruang kerja robot dalam bentuk 2D dan kawasan kerja yang selamat. Dalam projek ini, keselamatan dan beberapa aspek yang perlu dipertimbangkan semasa memasang robot industri adalah amat dititikberatkan dalam menjamin keselamatan pada masa akan datang. Beberapa pembolehubah dan nilai-nilai ukuran yang tertentu adalah perlu dititikberatkan semasa memasang robot industri dan dalam menentukan ruang kerja robot industri itu sendiri.

Dalam merekabentuk dan memperkembangkan program komputer untuk menentukan ruang kerja robot dalam bentuk 2D dan kawasan kerja yang selamat, beberapa penyelidikan dan kajian tentang robot industri dan specifikasinya telah dibuat dan diterangkan dengan lebih lanjut dalam laporan ini. Selain daripada itu, kajian tentang program komputer dan perisian lukisan juga telah dibuat untuk menambah pengetahuan dan informasi yang akan digunakan dalam melaksanakan projek ini. Hasil penyelidikan dan kajian telah dipilih dan akan digunakan sebagai rujukan dalam merekabentuk program komputer untuk menentukan ruang kerja robot dalam bentuk 2D dan kawasan kerja yang selamat. AutoCAD adalah pilihan untuk melukis ruang kerja untuk robot dalam bentuk 2D. Manakala Microsoft Visual Basic.NET dipilih untuk memprogramkan program komputer dalam menentukan ruang kerja robot dalam bentuk 2D dan kawasan kerja yang selamat. Paparan pengguna adalah hasil projek ini di mana pengguna boleh berinteraksi dengannya untuk memenuhi kehendak atau keperluan.

DEDICATION

I dedicate this work:

To my caring father, Tuan Natilan bin Samid To my lovely mother, Puan Mislinah binti Hj. Kassan To my beloved brothers and sisters To my supervisor, En. Arfauz bin Abd Rahman And the other person those are my constant sources of encouragement.....

ACKNOWLEDGEMENTS

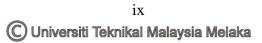
First and foremost, thanks to God because of His Willingness, I was complete my PSM report and had been representing this report titled 'Design and Development of Computer Program to determine 2D Robot Workspace and Safe Working Area' successfully. I also believe this report would not been completed and produced properly without the help from supervisor, lecturers, family and friends.

I would like to express my sincere grateful and appreciation to my supervisor, En. Arfauz bin Abd. Rahman for his support, intelligence in helping me to solve problems and share ideas related to my project, report revision and assessment.

I also would like to dedicate my gratefully acknowledge to all the FKP lecturer who had sharing ideas related to my project and giving useful guidance and some advice. Special thanks to my C++ lecturer from FTMK, En. Sanusi bin Azmi for his useful knowledge and ideas. All of their supports are greatly appreciated.

I also happy to present my gratefully acknowledge to my beloved family for their incessant love, support, continuous encouragement and understanding to made this project possible and success. Not forgetting special thanks to all friends for their support and understanding. They are always behind and with me along this project from start until end of this project.

Finally, thanks again to the entire person for supporting me until I had ended my project successfully.

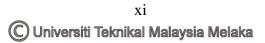

TABLE OF CONTENTS

Abstra			i
Dedica	ation		ix
Ackno	wledge	ement	v
Table	of Cont	tents	vi
List of	Figure	·s	X
List of	Tables	5	xi
List of	Abbre	viations, Symbols, Specialized Nomenclature	xii
1.0	GENI	ERAL INTRODUCTION	1
1.1	Introd	uction	1
1.2	Objec	tives of the project	4
1.3	Scope	s of the project	4
1.4	Layou	tt of the thesis	5
2.0	LITE	RATURE REVIEW	6
2.1	Introd	uction	6
2.2	Robot	and its Component	8
	2.2.1	Robot	8
	2.2.2	Robot Components	11
		2.2.2.1 Mechanical Unit	11
		2.2.2.2 Power Source	12
		2.2.2.3 Control System	12
		2.2.2.4 Tooling	13
2.3	Indust	rial Robot	13
	2.3.1	Classification of Industrial Robot	14
		2.3.1.1 Cartesian	14
		2.3.1.2 Cylindrical	15

		2.3.1.3 Spherical	16
		2.3.1.4 Articulated / Jointed Arm	17
	2.3.2	Brand of Industrial Robot	18
		2.3.2.1 ABB	18
		2.3.2.2 FANUC	21
		2.3.2.3 KAWASAKI	23
		2.3.2.4 MOTOMAN	24
		2.3.2.5 KUKA	27
	2.3.3	Robot Working Envelope	30
		2.3.3.1 Example of Working Envelope for Articulated Arm Robot	31
	2.3.4	User Interface	32
2.4	Comp	uter Program Software	33
	2.4.1	Terms in OOP (Object Oriented Programming)	33
	2.4.2	Microsoft Visual Basic.NET	34
		2.4.2.1 Solving a Problem	35
		2.4.2.2 Planning an OOED Application	36
		2.4.2.3 Building a User Interface	39
		2.4.2.4 Coding an Application	42
		2.4.2.5 Testing, Debugging and Documenting	42
	2.4.3	Microsoft Visual C++.NET	43
		2.4.3.1 Structure of C++ Program	46
		2.4.3.2 Input, Processing, Output (IPO) Chart	47
		2.4.3.3 Coding the Algorithm into a Program	49
		2.4.3.4 Desk-Checking the Program	49
		2.4.3.5 Evaluating and Modifying the Program	50
2.5	Drawi	ng Software	51
	2.5.1	AutoCAD	51
	2.5.2	Solidworks	52
2.6	Concl	usion	53

3.0	MET	HODOLOGY	.55
3.1	Introd	luction	.55
3.2	Resea	rch Methodology	.58
3.3	Resea	rrch Tool	.58
	3.3.1	Books	.58
	3.3.2	Thesis	.58
	3.3.3	Internet	.58
	3.3.4	Journal	.59
3.4	Resea	rch Planning	59
	3.4.1	PSM1 Gantt chart	60
	3.4.2	PSM2 Gantt chart	61
4.0		GN AND DEVELOPMENT	
4.1	Introd	luction	.62
4.2	User l	Interface for This Project	63
	4.2.1	First Level User Interface	.65
	4.2.2	Second Level User Interface	.66
	4.2.3	Third Level or Result Level	.67
4.3	Codin	ng for This Project	69
	4.3.1	Coding for First Level	.69
	4.3.2	Coding for Second Level	.70
		4.3.2.1 Coding for BOIR1 (No. of Robot = 1)	.70
		4.3.2.2 Coding for BOIR2 (No. of Robot = 2)	71
		4.3.2.3 Coding for BOIR3 (No. of Robot = 3)	.72
		4.2.3.3 Coding for BOIR4 (No. of Robot = 4)	.73
	4.3.3	Coding for Third Level or Result Level	.74
		4.3.3.1 Coding for FANUC Brand (No. of Robot = 1)	.74
		4.3.3.2 Coding for FANUC Brand (No. of Robot = 2)	.77
		4.3.3.3 Coding for FANUC Brand (No. of Robot = 3)	.78
		4.3.3.4 Coding for FANUC Brand (No. of Robot = 4)	79

	ERENCES	
6.0	CONCLUSION AND RECOMMENDATION	
5.0	DISCUSSION	106
4.4	Conclusion	105
	4.3.3.20 Coding for MOTOMAN Brand (No. of Robot = 4)	104
	4.3.3.19 Coding for MOTOMAN Brand (No. of Robot = 3)	103
	4.3.3.18 Coding for MOTOMAN Brand (No. of Robot = 2)	102
	4.3.3.17 Coding for MOTOMAN Brand (No. of Robot = 1)	99
	4.3.3.16 Coding for KUKA Brand (No. of Robot = 4)	98
	4.3.3.15 Coding for KUKA Brand (No. of Robot = 3)	97
	4.3.3.14 Coding for KUKA Brand (No. of Robot = 2)	96
	4.3.3.13 Coding for KUKA Brand (No. of Robot = 1)	
	4.3.3.12 Coding for KAWASAKI Brand (No. of Robot = 4)	
	4.3.3.11 Coding for KAWASAKI Brand (No. of Robot = 2)	
	4.3.3.10 Coding for KAWASAKI Brand (No. of Robot = 2)	
	4.3.3.9 Coding for KAWASAKI Brand (No. of Robot = 1)	
	4.3.3.8 Coding for ABB Brand (No. of Robot = 4)	
	4.3.3.7 Coding for ABB Brand (No. of Robot = 2)	
	4.3.3.5 Coding for ABB Brand (No. of Robot = 1)	
	4.3.3.5 Coding for ABB Brand (No. of Robot = 1)	80



LIST OF FIGURES

1.1	Robotic Systems	2
2.1	The 6 Degree of Freedom (DOF) Robot	9
2.2(a)	Welding	10
2.2(b)	Spot Welding	10
2.2(c)	Spray Painting	10
2.2(d)	Assembly Operation	10
2.2(e)	Palletizing	10
2.2(f)	Material Handling in the Semiconductor Industry	10
2.3	A Major Robot Components	11
2.4	A Cartesian Configuration	15
2.5	A Cylindrical Configuration	16
2.6	A Spherical Configuration	17
2.7	An Articulated / Jointed Arm Configuration	18
2.8	A Robot Work Envelope	31
2.9	Working Envelope for IRB1410 (Arc Pack)	32
2.10	Process the C++ Compiler	44
2.11	A Typical Program Development Environment	45
2.12	A Structure of C++ Program	46
2.13	IPO Chart with a Flowchart in the Processing Column	48
3.1	Research Methodology	56
3.2	Processes in Programming	57
4.1	First Level User Interface	65
4.2	Second Level User Interface show the List of Brand of Industrial Robot	66
4.3	Third Level or Result Level	67

LIST OF TABLES

1.1	Causes of Accidents in Robot Work Cells	3
2.1	Type of ABB Robot	19
2.2	Type of FANUC Robot	21
2.3	Type of KAWASAKI Robot	23
2.4	Type of YASKAWA Robot	26
2.5	Type of KUKA Robot	28
2.6	A Programmer Processes	37
2.7	An IPO Chart	47
4.1	Types of Industrial Robots	64

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

2D	-	2 Dimensional
3D	-	3 Dimensional
PSM1	-	Projek Sarjana Muda 1
PSM2	-	Projek Sarjana Muda 2
R.U.R	-	Rossum's Universal Robots
DOF	-	Degree of Freedom
AC	-	Analog Current
DC	-	Digital Current
ABB	-	Asian Brown Boveri
ME	-	MOTOMAN Robotics Europe AB
YEC	-	YASKAWA Electric Corporation
OOP	-	Object-Oriented Programming
IDE	-	Integrated Development Environment
OOED) -	Object-Oriented/Event-Driven
TOE	-	Task, Object, Event
IPO	-	Input, Processing, Output
CAD	-	Computer Aided Design
OLE	-	Object Linking and Embedding
API	-	Application Programming Interface
VBA	-	Visual Basic Appilication
cpp	-	c plus plus
obj	-	object
exe	-	executable
kg	-	kilogram
mm	-	millimeter

CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction

There were about 750,000 robots working in industry worldwide. Modern industrial robot arms have increased in capability and performance through controller and language development, improved mechanisms, sensing and drive systems. In the early to mid 80's the robot industry grew very fast primarily due to large investments by the automotive industry. The robot industry has only recently recovered to mid-80's revenue levels [1].

Robotic systems have involved installing robots in controlled access locations within a manufacturing environment. Safety principles used in manufacturing safety standards for robot installations include making sure that the operator is never in the work envelope of the robot when it is powered up and capable of moving and limiting maximum velocities during maintenance and programming tasks. The robotic systems with the safety devices and safe workplace are shown in Figure 1.1.

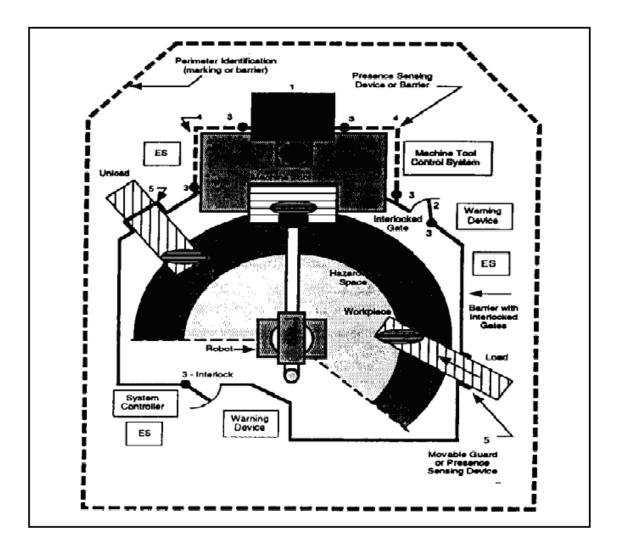


Figure 1.1: Robotic Systems.

The extensively industrial robot use in the manufacturing industries make a new challenge of safety systems and robot installations for all people in the industry especially workers in the working envelope. Injury rates for workers may be increase without proper safety systems and robot installations software for safety workspace and safe working area. Therefore, the need of safety systems and robot installations software to ensure the hazard can be minimized and eliminated to an acceptable limit.

The statistics on occupational injuries compiled by Labor Department of Hong Kong in 1999, there were nearly 7000 injuries and 40 fatalities in manufacturing. These statistics also indicated that there were more than 1300 workers injured due to striking against or being struck by dynamic moving objects in the workplace [2]. In Sweden and Japan, some industrial accidents were related to robot operation including failure to stop, expected and unexpected pauses and starts of robot motion, high speed motion of the robot arm, entering the work envelope for troubleshooting repair and maintenance, unauthorized entry into general robot work envelope, intentional disabling of safety devices and robot work functions unknown to the operator [3]. There are eight causes for accidents in robot work cells identified in Japan as listed in Table 1.11[4, 5].

No.	Cause	Percent
		(%)
1	Incorrect action of the robot during normal operation because of system fault.	5.6
2	Incorrect action or operation of peripheral equipment in the robot work cell during normal operation.	5.6
3	Careless approach of robot by operator, programmer, maintenance personnel or unauthorized employee.	11.2
4	Human error in teaching or testing.	16.6
5	Incorrect action of the robot during manual operation because of system fault.	16.6
6	Incorrect action of the robot during testing and repairing.	16.6
7	Incorrect action or operation of peripheral equipment in the robot work cell during testing and repairing.	16.6
8	Other causes	11.2

Table 1.1: Causes of Accident in Robot Work Cells

In Malaysia, a specific study on the robot installations software or computer program for robot workspace and safe working area is not yet carried out. Therefore, this project is create, design, and develop considering that subject testing will incorporate a psychophysical approach to an analysis of risk and hazard perception for risk reduction in the workplace. Before this, during installation the robot system in the industry, there is no software or program to determine 2D robot workspace and safe working area. Virtual and real conditions can be compared. This software is expected can be used to help industry to establish realistic guidelines to improve facility design and reduce hazards in the workplace. The software could be used ultimately for risk reduction in the workplace.

1.2 Objectives of the project

The objectives of this project are as follow:

- 1. To create and determine 2D robot workspace and safe working area.
- 2. To evaluate current computer program to determine 2D robot workspace and safe working area.
- 3. To recommend for improvement of computer program to determine 2D robot workspace and safe working area.
- 4. To design and develop a new model of a computer program to determine 2D robot workspace and safe working area.

1.3 Scopes of the project

Scopes of this project include:

- 1. Collect necessary data on the current computer program to determine 2D robot workspace and safe working area.
- 2. Use any programming software and workspace software.
- 3. Create experimental documentation and user manual for Workspace software.
- 4. Design and develop a new model of a computer program and determine 2D robot workspace and safe working area.

1.4 Layout of the thesis

The general introduction about this project is provides in Chapter 1 that discuss about the problem statement carried out for this project named "Design and Develop a computer program of 2D Robot Workspace and Safe Working Area", objectives and scopes of this project briefly. Layout of this report is also presented in this chapter.

Chapter 2 provides a literature review or past studies in area relating to robot, industrial robot and work envelope for the robot in the industry, computer program and drawing software. This chapter is also as a reference to implement this project. List of brand and type of industrial robot is presented in this chapter that will be used and applied in this project. Computer program and drawing software will be choose and used to create, program and execute this project become success.

All of the method and analysis of the data used to implement this project is presented and described briefly in this chapter named Methodology chapter or Chapter 3. Flow chart of research methodology from start to end of this project is presented and explained briefly. Sources of the data and information are described in research tool. Project research planning for PSM1 and PSM2 that has been fixed in Gantt chart are outlined in this chapter.

The fourth chapter is Design and Development chapter. The emphasis of this chapter is the output of this project and it also including the analysis done during implements this project and presentation of the user interface.

Chapter 5 or known as Discussion chapter provides a general discussion on the results of this project, stressing the significance and several implications of the findings of the project undertaken.

Overall of this project will be described and concluded in the last chapter (chapter 6) named Conclusion and Recommendation. Beside that, any suggestion to improve and develop this project in the future will be outlined in this chapter. All the result and finding drawn from this research will be concluded in this chapter.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Nowadays, robotics technologies are widely use in our lifestyles in determining and fulfill our need. The real application of robot in industry has been started early 1950's. General Motors installed its first industrial robot to enhance the productivity of production lines. The uses of industrial robot were replacing workers from unhealthy and hazardous environment. It also brought some new safety problems for them especially when workers are in working envelope of the robot. The accident rates will be increase if there are not proper or lack of safety integration between workers and robot [5]. Beside that, during installation and locate the industrial robot at any workspace, the working envelope of the robot should be considered and emphasized so that the accident rates can be decrease. There are many brand of industrial robot in this new era technologies such as ABB, KUKA, FANUC and any others that are use in the industries with different application and working envelope. However, industrial robot should be programmed first to perform its job or application. Then, it will perform its application according to the programming and work in its working envelope.