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ABSTRACT 

 

 This thesis presents the development of direct torque control (DTC) algorithm for 

five-phase induction machine. In DTC, a de-coupled control of electromagnetic torque 

and stator flux was established so that a fast instantaneous torque and flux control can be 

achieved. Based on the look-up table, the suitable voltage vectors are selected according 

to the information of the flux sector and error status (output of hysteresis comparators) in 

order to control both of stator flux and torque. In comparison to three-phase DTC, five-

phase DTC provides a higher number of switching states (i.e 32 voltage vectors) which 

can offer more options in selecting the most optimal voltage vectors to further improve 

the overall DTC performances. This thesis is served to develop mathematical modeling 

and simulation of DTC of five-phase induction machine. It consists of a look-up table for 

32 voltage vectors selection, modeling of five-phase induction machine, transformation of 

five-to-two phase as well as flux and torque estimators. The feasibility of the modeling 

which is based on MATLAB SIMULINK was verified through simulation results. 
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ABSTRAK 

 

 Tesis ini memaparkan perkembangan algoritma untuk kawalan dayakilas terus 

(DTC) bagi mesin aruhan lima-fasa. Untuk DTC, satu kaedah bagi mengawal dayakilas 

dan fluks secara beasingan telah dicipta supaya pengawalan daya kilas dan fluks dapat 

dikawal dengan serta-merta. Merujuk kepada jadual pemilihan, pemilihan vektor voltan 

telah dibuat berdasarkan sektor fluks dan status ralat (keluaran histerisis comparator) 

untuk mengawal kedua-dua dayakilas dan fluks. Dalam pembandingan dengan DTC tiga-

fasa, DTC lima-fasa mempunyai lima pensuisan voltan yang menyediakan lebih banyak 

pensuisan voltan (i.e 32 voltan vektor) di mana lebih banyak pemilihan dapat ditawarkan 

untuk memilih voltan vektor yang paling optimum supaya prestasi keseluruhan DTC 

dapat ditingkatkan lagi. Tesis ini berkhidmat untuk membangunkan pemodelan 

matematik dan simulasi DTC untuk mesin aruhan lima-fasa. Ini meliputi jadual pemilihan 

32 vektor voltan, pemodelan mesin aruhan lima-fasa, transformasi lima-kepada-dua fasa, 

dan juga estimasi fluks serta dayakilas. Kesesuaian untuk pemodelan berdasarkan 

MATLAB SIMULINK telah disahkan melalui keputusan simulasi. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Vector Control of Induction Machine Drives 

Due to its simplicity and high performance torque control, DC machines 

have been used widely in many applications. Their commutation movement 

produces orthogonal torque and flux, which constructs high performance control 

under optimal conditions. Nonetheless, the DC machines are expensive, required 

regular maintenance, limited speed and unable to operate in dirty or explosive 

environment. Thus, the induction machines became popular and gradually 

replacing DC machine drives in many industrial applications due to the Field-

Oriented Control (FOC) introduced by F. Blaschke in 1970’s. FOC can produce 

comparable performance that obtained in DC machines [1]. Furthermore, their 

popularity is also assisted by the rapid development in power semiconductor 

devices and the emergence of high speed microprocessor and digital signal 

processors [2]. 

Vector control in AC drives is used to control the flux and torque 

independently. The torque dynamic control is improved in order to obtain the 

results which are comparable to that DC machines. Under optimal circumstances, 
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the orthogonal (90°) of torque and flux will produce high performance control of 

AC machines due to: 

                                         

In view of their respective producing current components, FOC provides a 

decoupled control of torque and flux which is equivalent to the DC machine 

control method. This is because of the stator current vector (in the rotating 

reference frame) that produces orthogonal stator torque and flux current 

components to develop as DC quantities. The rotating reference frame refers 

either to the rotor or stator flux. Based on rotor flux, the Rotor Flux-Oriented 

Control is sensitive to the parameter variations and it also requires the knowledge 

of rotor speed and position using absolute encoder. Therefore, Stator Flux-

Oriented Control is more frequently in used for induction machine as it does not 

require the information of the rotor speed and position. 

 

1.2 Direct Torque Control of Induction Machine 

In the past decades, the Direct Torque Control (DTC) scheme for induction 

motor drives [3] has gained its popularity in industrial motor drive applications. It 

was also used as the main platform for the ABB inverter technology, and the first 

DTC drive was marketed by ABB in 1996 [4-5]. Its popularity increases since it 

offers a faster instantaneous dynamic control and its control structure is simpler 

compared to the FOC scheme [3, 6-7]. In FOC, the torque and flux are controlled 

based on their producing current components. As for the DTC, the torque and flux 

are controlled independently. 
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The simple control structure of DTC proposed by Takahashi [3] is 

illustrated in Figure 1.1. This control structure consists of three-phase voltage 

source inverter (VSI), hysteresis comparator, flux and torque estimators as well as 

switching table. The stator flux and electromagnetic torque can be controlled 

independently using a two-level and three-level hysteresis comparators 

respectively. Then, an appropriate voltage vector is chosen to satisfy the flux and 

torque requirement. A combination of the voltage model and current model using 

a first order lag network was implemented in [3]. To achieve a proper flux 

estimator for entire speed range operations, the voltage model produces better flux 

estimation for high speed range operations. They require only stator resistance and 

terminal quantities such as stator voltages and currents, which in turn leads to the 

robust control of DTC. 

 

 

 

 

 

Figure 1.1 Simple Control Structure of DTC 

 

1.3 Improvements of Direct Torque Control Performances 

Since DTC was first introduced in 1986 [3], several modifications to its 

original structure (DTC hysteresis-based) were proposed to improve the 

performance of DTC. Recently, researchers are surveyed on the DTC 

overmodulation strategy in which it will enhance the dynamic performance and 

va, vb, vc 
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the output power of DTC. The improvements of DTC are categorized in three 

categories as follows: 

 Torque Ripple Reduction and Constant Switching Frequency 

To reduce the output torque, the bandwidth of hysteresis 

comparator is reduced to an appropriate value. The selection of the 

appropriate bandwidth is based on the worst operating conditions [8] for 

ensuring the switching frequency does not exceed its limit. Besides that, it 

is advantageous for the usage of high speed processor to keep the ripple 

within the band. 

Furthermore, the ripple can be minimized by injecting high 

frequency triangular waveforms to the torque and flux errors [9]. This 

method is known as dithering technique. The purpose of this technique is 

to minimize the torque ripple even in performing the DTC at limited 

sampling frequency. Nevertheless, it still produces unpredictable switching 

frequency since the torque and flux slopes which are related to the 

switching frequency; do vary with operating conditions [10-11]. 

To provide a constant switching frequency and reduced output 

torque ripple, a constant switching frequency is established in the DTC 

hysteresis-based by adjusting the bandwidth of the hysteresis comparators 

according to the changes in operating conditions [12]. This method 

increases the complexity of the DTC drive but it does not promise for a 

reduction of torque ripple. 

As proposed by [13], the principle operation of torque controller 

using the hysteresis-based is replaced with a triangular carrier-based. The 

most common approach to solve the problems is by using the space vector 
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modulation (SVM) [14-15]. To synthesis the desired voltage vector, the 

switching period is divided into three or more states. This approach will 

produce the minimum torque ripple. 

 Fast Torque Dynamic Control via Overmodulation Strategy 

The torque dynamic performance can be improved by employing 

the existed DC link voltage through overmodulation. To perform the DTC 

under overmodulation mode, it is preferable to use the SVM [14] rather 

than other techniques due to its flexibility to be implemented for advanced 

motor control. This technique requires a single reference voltage vector, 

vs,ref, to define the mode of overmodulation. It is predictable that the vs,ref 

will surpase the voltage vector limits enclosed by a hexagonal boundary 

during large torque demand. Under this circumstances, the SVM has to be 

activated by modifying the vs,ref so that it will be positioned within the 

hexagonal boundary. 

 Improved Torque Capability via Flux Weakening and Overmodulation 

Strategy 

In practice, a flux weakening strategy is developed to lengthen the 

motor speed beyond the base speed. This in turn will enhance the 

capability of torque. To achieve maximum torque capability in field 

weakening region, the optimal flux of the motor is estimated based on the 

maximum voltage and current of inverter. Basically, the algorithms require 

frame transformer, information of machine parameters and SVM. 

Moreover, a robust field weakening strategy is provided so that any 

variations of machine parameters used in calculating the optimal flux can 

be compensated [16-17]. The DTC must have the ability to operate in six-
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step mode for the achievement of the fastest dynamic torque response and 

high torque capability in the flux weakening region. 

 

1.4 Three-Phase versus Five-Phase Direct Torque Control 

In three-phase DTC, it only has three switching states [Sa Sb Sc] that can 

compose eight space voltage vectors and are equally divided into six sectors. In 

comparison with the three-phase DTC, five-phase DTC has five switching states 

[Sa Sb Sc Sd Se] which consists of 32 space voltage vectors in which it is evenly 

divided into 10 sectors. A more precise control of stator flux and electromagnetic 

torque can be achieved because this system provides greater flexibility in selecting 

the inverter switching states [18-20]. Due to the high phase number of drives, a 

fast torque response with low ripple in the stator flux and torque can be attained. 

An application of zero voltage vectors and those voltage vectors with the smaller 

amplitudes are applied to minimize the ripple in the stator flux and torque and thus, 

obtaining a better control schemes for DTC with 32 space voltage vectors [18].  

Besides that, high phase number of drives possesses several advantages 

over conventional three-phase drives. The advantages are the torque pulsations 

have reduced amplitude and increased frequency, rotor harmonic currents are 

reduced, current per phase are reduced without enlarging the voltage per phase, 

DC link current harmonics are lowered as well as higher reliability [18-19, 21-25]. 

For the same volume machine, the torque per rms is increased by increasing the 

number of phases [18-19, 21, 26-27]. Therefore, the performance of DTC control 

system can be influenced by the number of space voltage vectors and switching 

frequency.  


