

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CORROSION BEHAVIOR OF TIAIBN, TIN AND AIN COATING PRODUCED BY MAGNETRON SPUTTERING ON MAGNESIUM SUBSTRATE (USING HANK'S SOLUTION)

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

KHAIRUN NAZIHAH BINTI KHALID B050810081 890503105312

FACULTY OF MANUFACTURING ENGINEERING 2012

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Corrosion Behavior of TiAIBN, TiN and AIN Coating Produced by Magnetron Sputtering on Magnesium Substrate (Using Hank's Solution)

SESI PENGAJIAN: 2011/12 Semester 2

Saya KHAIRUN NAZIHAH BINTI KHALID

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (√

	SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
		Disahkan oleh:
Alamat Tet	tap:	Cop Rasmi:
	ek Chempedak	
14120, Sim	ipang Ampat	
Seberang P	Prai Selatan, P.Pi	nang
Tarikh:		Tarikh:
		u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

** he SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Corrosion Behavior of TiAlBN, TiN and AlN Coating Produced by Magnetron Sputtering on Magnesium Substrate (Using Hank's Solution)" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	KHAIRUN NAZIHAH BINTI KHALID
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) (Hons.). The member of the supervisory is as follow:

.....

(Project Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Matlamat projek ini adalah untuk membandingkan sifat kakisan/karat salutan (coating) TiN, AlN dan TiAlBN ke atas aloi magnesium (Mg). Selain itu, sifat-sifat umum salutan yang mempengaruhi kakisan di dalam Mg akan ditentukan. Dalam projek ini, ujian elektrokimia akan dilakukan untuk mendapatkan kesan kakisan oleh salutan ke atas Mg. Tambahan pula, ujian ini memberi persekitaran yang sama seperti persekitaran kakisan/karat. Cecair Hank (Hank's solution) akan digunakan sebagai elektrolit dan kadar kakisan/karat akan dikira melalui ujian ini. Peralatan pencirian bahan seperti 'Scanning Electron Microscopy' (SEM) dan 'Energy Dispersive X-ray Spectroscopy' (EDX) diperlukan untuk melihat permukaan Mg yang terkakis/karat.

ABSTRACT

The aim of this project is to compare the corrosion behavior of TiN, AlN and TiAlBN coating on magnesium (Mg) alloy. Besides, the general properties of coating which influnced the corrosion of Mg are going to be determined. Electrochemical test will be utilized in order to get the effect of corrosion as this test is giving a similar environment as a corrosion environment. Furthermore, Hank's solution will be used as an electrolyte and the corrosion rate will be calculated through the test. Material characterization equipment such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) will be used in order to observe the morphology of corroded surface of Mg sample.

DEDICATION

To my beloved parents and friends for all the time I spent away from them while preparing this final year project's report.

ACKNOWLEDGEMENT

Alhamdulillah, I have successfully completed my final year project within the time given. In that period of time, I have gained so much experiences, memories and knowledge through my project. A lot of experiences and unforgettable memories are captured along the way in finishing my project. May those experiences help me in future either in my working life or in my further studies.

I would like to give the greatest gratitude to my supervisor, Dr Zulkifli Bin Mohd Rosli who was always helping and guiding me in order to complete this project. Although he always busy as he is the Head Department of Engineering Materials Department, he tried to spend his time for me and my friends regarding to this final year project.

In addition, I would like to tribute to Zainab Mahamud and Kwan Wai Loon, master students under Dr Zulkifli who were always giving me some additional information about my project. Besides, they make my understanding into detail on my project as their project is on the same field as mine.

Lastly, million thanks to friends and others who were directly or indirectly in helping and guiding me during finishing this project. Thank you so much for your endless support.

TABLE OF CONTENT

Abstra	ak		i
Abstra	act		ii
Dedic	ation		iii
Ackno	owledge	ement	iv
Table	of Cont	tent	v
List o	f Tables	3	viii
List o	f Figure	s	ix
List A	bbrevia	tions and Symbols	xii
CHA	PTER 1	: INTRODUCTION	1
1.1	Backgi	round	1
1.2	Problem	m Statement	2
1.3	Object	ives	3
1.4	Scope		
1.5	1.5 Project Organization		
CHA	PTER 2	2: LITERATURE REVIEW	5
2.1	Magn	esium and Its Alloy	5
2.2	Corros	sion	7
	2.2.1	Corrosion of Magnesium Alloy	8
	2.2.2	Corrosion of AZ91 Magnesium Alloy in Hank's Solution	11
2.3	Coatir	ng	12
	2.3.1	TiN Coating	13
	2.3.2	AIN Coating	15
	2.3.2	TiAlBN Coating	18
2.4	Physic	cal Vapour Deposition (PVD)	19
	2.4.1	Sputtering	21
		2.4.1.1 Magnetron Sputtering	22
		2.4.1.2 Radio Frequency (RF) Sputtering	23

		2.4.1.3 Direct Current (DC) Sputtering	23
2.5	Hank'	s Solution	24
	2.5.1	Biomedical Applications	24
	2.5.2	pH of Human Blood	25
2.6	Electro	ochemical Test Technique	26
	2.6.1	Potentiodynamic Polarization Method	28
2.7	Scann	ing Electron Microscopy (SEM) and Energy Dispersive X-Ray	30
	Spectr	oscopy (EDX	

CHAPTER 3: METHODOLOGY		33	
3.1	Introc	luction	33
3.2	Electr	ochemical Cell	34
3.3 Experimental		imental	35
	3.3.1	Coating Sample Preparation	35
	3.3.1	Electrochemical Testing Preparation	37
	3.3.3	Experimental Setup for Electrochemical Testing	39
	3.3.4	Surface Characterization	40

CHAPTER 4: RESULT AND DISCUSSION

4.1	Morphology and Chemical Composition			
	4.1.1	Uncoated AZ91 Magnesium Alloy	41	
	4.1.2	TiAlBN Coated AZ91 Magnesium Alloy	44	
	4.1.3	AlN Coated AZ91 Magnesium Alloy	47	
	4.1.4	TiN Coated AZ91 Magnesium Alloy	50	
4.2	Electrochemical Behaviour			
	4.2.1	Corrosion Behavior of Coated and Uncoated AZ91 Magnesium	55	
		Alloy		
	4.2.2	Penetration Rate, CR and Mass Loss Rate, MR	59	
4.3	Soluti	on pH	61	

41

CHA	APTER 5: COCLUSION AND FUTURE WORK	62
5.1	Coating Corrosion Rate	62
5.2	Biomedical Applications	63
5.3	Duplex Coating in Future	63

REFERENCES

64

LIST OF TABLES

2.1	Classification of magnesium alloys	6
2.2	Anodic index (v) of metal	8
2.3	Summary for the deposition and diffusion techniques	20
3.1	Coating Deposition (Reactive Sputtering)	36
4.1a	Elemental Analysis of crack of uncoated AZ91 magnesium	43
	alloy by using EDX	
4.1b	Elemental analysis of corrosion products of uncoated	43
	AZ91 magnesium alloy by using EDX	
4.2a	Elemental analysis of crack of TiAlBN coated AZ91	46
	magnesium alloy by using EDX	
4.2b	Elemental analysis of corrosion products of TiAlBN coated AZ91	46
	magnesium alloy by using EDX	
4.3a	Elemental analysis of crack of AlN coated AZ91 magnesium	49
	alloy by using EDX	.,
4.3b	Elemental analysis of corrosion products of AlN coated AZ91	49
	magnesium alloy by using EDX	.,
4.4a	Elemental analysis of crack of TiN coated AZ91 magnesium	52
	alloy by using EDX	52
4.4b	Elemental analysis on surface of TiN coated AZ91	52
	magnesium alloy by using EDX	52
4.5	Total anodic current, corrosion potential and corrosion current of	58
	AZ91	50
4.6	Penetration rate, CR and mass loss rate, MR of coated and	
	uncoated AZ91 magnesium alloy	60
4.7	pH change of AZ91 magnesium alloy in Hank's Solution	61
	-	61

LIST OF FIGURES

2.1	Microstructure of AZ91	10
2.2	Evolution of corrosion potential (E_{corr}) in electrochemical test	
	using saturated calomel electrode (SCE) with time for the $TiNx$	14
	films	
2.3	Surface morphologies and aspect of cross-section of $TiNx$ films	14
2.4	The XRD patterns of AlN-coated magnesium alloys	16
2.5a	The SEM micrograph of fracture section of AlN coating	16
	deposited on a glass; magnification x 2000	
2.5b	The SEM micrograph of fracture section of AlN coating	16
	deposited on a glass; magnification x 5000	10
2.6	The SEM micrograph of coating defects	
2.7	Classification of surface treatment	17 19
2.9	Chemical composition of Hank's solution compared with the	24
	simulated body fluid SBF5 and SBF27, inorganic part of human	
	blood plasma and NaCl solution	28
2.10	Corrosion process showing the anodic and cathodic current	20
	components	
2.11	Classic Tafel analysis	29
2.12	Scanning Electron Microscopy (SEM)	30
2.13a	Surface appearance of samples after corrosion in Hank's	31
	solution before and product removal using SEM	
2.13b	Surface appearance of samples after corrosion in Hank's solution	31
	after product removal using SEM	
3.1	Summary of experimental procedures	33
3.2	Experimental setup for electrochemical techniques in laboratory	34
3.3	Flow chart of coating sample preparation	36
3.4	Flow chart for electrochemical test sample preparation	37

3.5	AZ91 magnesium alloy mounted sample	38
3.6	Flow chart of experimental setup for electrochemical testing	39
3.7	Electrochemical testing in progress	40
4.1	SEM micrograph of uncoated AZ91 magnesium alloy in Hank's	41
	Solution (magnification x 3000)	
4.2a	EDX spectra measured the element composition for crack	42
	of uncoated AZ91 magnesium alloy	
4.2b	EDX spectra measured the element composition for corrosion	42
	products of uncoated AZ91 magnesium alloy	
4.3	SEM micrograph of TiAlBN coated AZ91 magnesium alloy in	44
	Hank's Solution (magnification x 3000)	
4.4a	EDX spectra measured the element composition for crack	45
	of TiAlBN coated AZ91 magnesium alloy	
4.4b	EDX spectra measured the element composition for corrosion	45
	products of TiAlBN coated AZ91 magnesium alloy	
4.5	SEM micrograph of AlN coated AZ91 magnesium alloy in	47
	Hank's Solution (magnification x 3000)	
4.6a	EDX spectra measured the element composition for crack	48
	of AlN coated AZ91 magnesium alloy	
4.6b	EDX spectra measured the element composition for corrosion	48
	products of AlN coated AZ91 magnesium alloy	
4.7	SEM micrograph of TiN coated AZ91 magnesium alloy in	50
	Hank's Solution (magnification x 3000)	
4.8a	EDX spectra measured the element composition for crack	51
	of TiN coated AZ91 magnesium alloy	
4.8b	EDX spectra measured the element composition for corrosion	51
	products of TiN coated AZ91 magnesium alloy	

SEM micrograph at magnification x 500: Uncoated AZ91	53
Magnesium Alloy	
SEM micrograph at magnification x 500: Coated AZ91	53
Magnesium Alloy	
SEM micrograph at magnification x 500: AlN Coated AZ91	53
Magnesium Alloy	
SEM micrograph at magnification x 500: TiN Coated AZ91	53
Magnesium Alloy	
Potentiodynamic polarization of AZ91 magnesium alloy in Hank's	55
Solution	
Potentiodynamic polarization of TiAlBN coated and uncoated	57
AZ91 magnesium alloy in Hank's Solution	
Potentiodynamic polarization of TiN coated and uncoated	57
AZ91 magnesium alloy in Hank's Solution	
Potentiodynamic polarization of AlN coated and uncoated	57
AZ91 magnesium alloy in Hank's Solution	
	Magnesium Alloy SEM micrograph at magnification x 500: Coated AZ91 Magnesium Alloy SEM micrograph at magnification x 500: AlN Coated AZ91 Magnesium Alloy SEM micrograph at magnification x 500: TiN Coated AZ91 Magnesium Alloy Potentiodynamic polarization of AZ91 magnesium alloy in Hank's Solution Potentiodynamic polarization of TiAIBN coated and uncoated AZ91 magnesium alloy in Hank's Solution Potentiodynamic polarization of TiN coated and uncoated AZ91 magnesium alloy in Hank's Solution

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

Ag-AgCl	-	Argentum-ArgentumChloride
Al	-	Aluminium
AlN	-	Aluminium nitride
ASTM	-	American Society for Testing Material
BSS	-	Balanced Salt Solution
CVD	-	Chemical Vapor Deposition (CVD)
DC	-	Direct current
EDX	-	Energy Dispersive X-ray Spectroscopy
HBSS	-	Hank's Balanced Salt Solution
Mg	-	Magnesium
Ν	-	Nitrogen
PVD	-	Physical Vapor Deposition (PVD)
RF	-	Radio frequency
SBF	-	Simulated body fluid
SCE	-	Saturated calomel electrode
SEM	-	Scanning Electron Microscopy
TEM	-	Transmission Electron Microscopy
TiAlBN	-	Titanium aluminium boron nitride
TiN	-	Titanium nitride
UTeM	-	Universiti Teknikal Malaysia Melaka
XRD	-	X-ray Diffraction
Zn	-	Zinc
$\mathbf{A}_{\text{initial}}$	-	Exposed sample surface area, cm ²
CR	-	Penetration Rate, mm/y
EW	-	Equivalent Weight, g
E _{corr}	-	Corrosion Potential, V
I _{corr}	-	Total anodic, µA

K_1	- 3.27×10^{-3} , mm g/µA cm yr
K ₂	$-8.954 \text{ x } 10^{-3}$, g cm ² / μ A m ² d
MR	- Mass Loss Rate, g/m ² d
Μ	- Mass, g
v	- Volume, cm^3
<i>i</i> _{corr}	- Corrosion current density, $\mu A/cm^2$
ρ	- Density, g/cm^3
α-phase	- Primary α -phase in magnesium alloy
β-phase	-eutectic β -phase in magnesium alloy

CHAPTER 1 INTRODUCTION

1.1 Background

In the early of 1950s, magnesium alloys has been widely used in aerospace and automotive industries due to its low density and high strength-to-weight ratio. As the lightest structural metallic materials, their application has been extensively increase especially in vehicle construction and aeronautics field.

It is well known that magnesium and its alloys having the hexagonal crystal structure. Minchen and Weiheim (2000) as cited in Wei Guo K., (2010) claims that their formability at ambient temperature has been affected by the multi-slip planes causing the deforming of the grain boundaries due to stresses from localized slip. In addition, the formation of a thin surface film which is not dense indicates that the underlying metal cannot be completely covered. Thus, they are highly influenced to corrosion (Wei Guo, 2010).

Since the application of magnesium in industries is limited by the corrosion, it is important to improve this weakness by surface modification. In this paper, various coating has been done on magnesium AZ91 by using physical vapor deposition (PVD) methods. PVD is a process where the material is vaporized from solid or liquid form into atom or molecules form. The main categories of PVD methods are vacuum deposition, sputter deposition arc deposition and ion platting. In this project,

the coatings will be deposited by using sputter deposition. There are three types of coating which will be focused in this work, TiN, AlN and TiAlBNcoating.

In order to determine the corrosion behavior for each coating, an electrochemical test will be done. The sample will be immersed in simulated body fluid; Hank's solution and the corrosion rate and corrosion potential will be determined. Higher the corrosion potential, better the corrosion resistance for magnesium AZ91. In order to observe the surface morphology of the corroded sample, analytical techniques will be used. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) is used in order to see the surface morphology of corroded sample.

1.2 Problem Statement

Over the years, magnesium (Mg) and its alloy has been developed as widely used structural materials in many fields due to their mechanical properties such as low density, high strength-to-weight ratio (Wang et al., 2010). Besides, increased in ductility and castability also make them being an industrially accepted for the numerous application.

However, one major problem with the application of magnesium and its alloy is poor corrosion resistance even in moderately aggressive environments (Sudholz et al., 2009). Therefore, to increase the resistance of corrosion on magnesium, surface treatment is needed. Coating is one of the surface treatments which can be done on magnesium. Coating tends to improve surface properties of the substrate such as corrosion resistance, wear resistance, appearance and wettability.

In this works, three types of coating would be deposited on magnesium AZ91 which are TiN, AlN and TiAlBN coating. The most preferable coating due to several properties which increases the corrosion resistance on magnesium will be determined.

1.3 Objectives

The objectives of this project are:

- To compare the corrosion behavior of TiAlBN, TiN and AlN coating produced by magnetron sputtering on magnesium substrate.
- To understand the general properties of coating including surface morphology and chemical composition.
- To evaluate surface morphology of general corrosion on different coatings.

1.4 Scope

This project is to compare the corrosion behavior between TiAlBN, TiN and AlN coating. Only the general properties of corrosion in coating will be discussed. Test method which relates with this project paper, electrochemical testing will be used. The solution which will be used as an electrolyte in the electrochemical testing is a simulated body solution, Hank's Solution. Besides, an observation will be done on surface topography of the sample in order to prove the form of corrosion.

1.5 Project Organization

This project was organized into five chapters:

Chapter 1 is the introduction to this report. This includes background, problem statement, objectives and scope of the project.

Chapter 2 is on literature review which describing the findings of the project, theoretical and methodology before the experimental works start.

Chapter 3 is on methodology which includes experimental procedures and apparatus setup required for the corrosion test. The micrographic observation procedure also will be included.

Chapter 4 includes the results and discussion of the experiment and the observation on the morphology.

Chapter 5 is would like to conclude on overall project. Recommendation for further study also will be discussed in this chapter.

CHAPTER 2 LITERATURE REVIEW

2.1 Magnesium and its Alloy

Having a quarter weights of the steel and a third lighter than aluminium makes magnesium becomes the lightest structural of metal in the world. Magnesium was found 2.8% in sea water and other forms, including Dolomite (CaMg(Co3)2), Magnesite (MgCo3) and Carnallite (KMgCl3.6H2O). These forms have been found in USA, England, Australia, Germany, Russia and Italy (Tapany, 2007). Magnesium with 99.8% purity is readily available but it was rarely used in engineering applications.

According to the ASTM (American Society for Testing Material) system, magnesium and its alloy has been designated by two capital letters followed by two or three numbers.

Letters: Stands for the two major alloying	Example : AZ91
elements.	A-Aluminium is the highest amount
*First letter: The highest amount	in AZ91.
*Second letter: The second highest amount	Z-Zinc is the second highest.
Numbers: Stands for the amount of the two	Example: AZ91
major alloying elements.	9-9 wt% of Aluminium.
*First number: The wt% of the first letter	1-1 wt% of Zinc.
element.	
*Second number: The wt% of the second letter	
element.	

Table 2.1: Classification of magnesium alloys (Tapan, 2007).

Some of the commercial magnesium alloys:

- 1. Mg-Al casting alloys
- 2. Mg-Al-Zn casting alloys
- 3. Mg-Zn and Mg-Zn-Cu casting alloys
- 4. Mg-Zn-Zr and Mg-RE-Zn-Zr casting alloy
- 5. High temperature Mg casting alloys
- 6. Wrought Mg alloys

In this project, magnesium with AZ91 will be focused as Mg-Al-Zn system being the most widely used. This is because cast magnesium alloys dominate 85-90% of all magnesium products (Tapany, 2007).

Alloying elements in magnesium intends to produce alloys with high-strength-toweight ratios. This may suitable in many fields of application such as aerospace, electronics and automobile field. Besides, they have high specific strength modulus and excellent anti shock resistance as they are able to form compounds with negative valence ion rather than solid solution due to strong electropositive in the elements. However, low strength and toughness, low corrosion resistance and easily flammable with oxygen has limits the application of magnesium alloy (Tapany, 2007). Poor atmospheric corrosion resistance and very reactive in the air makes magnesium will be corroded easily. Thus, to improve the adhesion, wear and corrosion resistance of magnesium alloy, a proper surface treatment is necessarily done (Sudagar et al., 2011).

2.2 Corrosion

Low corrosion resistance is one of the limitations in the application of magnesium alloy. This purpose of this project is to determine which of the coating produced by magnetron sputtering is giving better surface treatment for magnesium alloy.

Corrosion can be defined as the degradation of a material due to a reaction with its environment. Corrosion is a destructive attack of a metal by chemical or electrochemical reaction with its environment (Revie, 2008). Up to 1960s, the term corrosion is restricted only to metals and its alloy without incorporating ceramics, polymers, composites and semiconductors. However, in recent years all type of natural and man-made materials is having connection with corrosion, not metal and its alloy alone (Ahmad, 2006).

