DIAGNOSIS OF CENTRIFUGAL PUMP FAILURES USING VIBRATION ANALYSIS

MOHD AZHAR BIN AHMAD

This report is submitted in partial fulfillment of requirement for the award of Bachelor of Mechanical Engineering

(Design and Innovation)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

June 2012

SUPERVISOR DECLARATION

'I hereby that I read this dissertation and found its content and form to meet acceptable presentation standards of scholarly work for the award of Bachelor of Mechanical Engineering (Design and Innovation) with honours'

Signature	:
Supervisor	: DR. REDUAN BIN MAT DAN
Date	·

DECLARATION

I hereby, declare this project entitled " Diagnosis of Centrifugal Pump Failures Using Vibration Analysis " is the result of my own research except as cited in the reference.

Signature:Authors name:MOHD AZHAR BIN AHMADDate: 31 MAY 2012

For my beloved parents, siblings and friends

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent and the Most Merciful. All praises to Allah the Almighty for giving me the strengths, guidance and patience in completing this report First and foremost, I would like to express my deepest gratitude to my family for their endless love and support for me to pursue my B.Eng. degree. My deepest appreciation goes to Dr. Reduan Bin Mat Dan for serving as a successful supervisor of this research project and for providing me with the insights and guidance to recognize my mistake. His valuable suggestion and encouragement enable me to handle this project with confidence. Furthermore, I would like to thank him for landing me adequate freedom and flexibility while working on this project. His understanding, wide knowledge and personal guidance have provided a good basis for the present report.

I would like to express my grateful thanks to Mr. Junaidi, Mr. Nasir and Mrs. Nor Hidayah for their technical guidance and support towards my experimental work in vibration laboratories of Mechanical Engineering faculty. Besides, special acknowledgement goes to my friends; Amiruddin, Rafi Omar and Rosli Che Mat for sharing their knowledge, professional advices and guidelines throughout the whole project. Useful discussions and suggestions from them are deeply appreciated. Last but not least, I would like to express deepest gratitude to those who have directly and indirectly contributed to the accomplishment and outcome of this project, especially my friends for their motivation, encouragement and moral support. Thank you so much.

ABSTRACT

Condition based maintenance (CBM) or predictive maintenance is the technology to detect early faults before they reach catastrophic failure. It is allow the maintenance personnel to do only the right things, minimizing system downtime, spare parts cost and time spent on maintenance. Vibration analysis is one of the CBM techniques to detect potential failure in dynamic monitoring such as failure in centrifugal pump. This report elaborates on diagnoses the centrifugal pump failure by using vibration analysis. The research tries to establish onset failure of centrifugal pump. The method will be artificially damaging the impeller of the pump gradually and detect the vibration signal produces by the impeller. The experimental procedure is completely prepared which consisting of early of experimental setup for vibration sensor and centrifugal pump until experiment done. The good and deterioration impeller had been used and all the data were be analyzed. This experiment had been conducted on a simple model of centrifugal pump. All of the data had been finalized and the monitoring software had been developed as the warning system for condition based maintenance.

ABSTRAK

Penyelenggaran berdasarkan keadaan atau penyelenggaraan ramalan ialah teknologi untuk mengesan kerosakan mesin pada peringkat awal. Ia membolehkan perancangan penyelenggaraan hanya dilakukan dengan betul, meminimumkan masa peberhentian mesin, kos alat ganti dan masa yang dibelanjakan untuk penyelenggaraan. Analisis getaran merupakan salah satu teknik untuk mengesan kegagalan mesin dalam pemantauan gerakan seperti kegagalan dalam pam empar. Laporan ini menghuraikan tentang diagnosis kegagalan pam empar dengan menggunakan analisis getaran. Penyelidikan yang cuba untuk dikaji ialah kegagalan permulaan pam empar. Kaedah yang digunakan ialah tiruan merosakkan bilah kipas pam secara beransur-ansur dan mengesan isyarat getaran yang terhasil olehnya. Prosedur eksperimen disediakan yang terdiri daripada awal persediaan eksperimen bagi pengesan gegaran dan pam empar sehingga eksperimen dilakukan. Bilah kipas yang baik dan rosak telah digunakan dan semua data telah pun dianalisis. Eksperimen ini telah dijalankan ke atas model pam empar yang ringkas. Semua data yang telah dikaji digunakan bagi perisian pemantauan yang telah dibangunkan sebagai sistem amaran untuk penyelenggaran berdasarkan keadaan.

TABLE OF CONTENTS

CHAPTER

TITLE

SUPERVISOR DECLARATION	ii
DECLARATION	iii
ACKNOWLEDGEMENT	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATION	xviii
LIST OF APPENDICES	xix

CHAPTER 1 INTRODUCTION

1.0	Research Overview	1
1.1	Centrifugal Pump Failure and Vibration Analysis	1
1.2	Problem Statement	2
1.3	Research Objectives	3
1.4	Research Scope	3
1.5	Organization Of The Report	3

CHAPTER 2 LITERATURE REVIEW

2.1	Centr	ifugal Pump	5	
	2.1.1	Principle of Centrifugal Pump Work	5	
	2.1.2	Centrifugal Pump Performance	6	
	2.1.3	Components of a Centrifugal Pump	8	
	2.1.4	Impeller Type	10	
2.2	Pump	ing System Characteristics	13	
	2.2.1	Resistance of the System: Head	13	
	2.2.2	Pump Performance Curve	16	
	2.2.3	Pump Operating Point	16	
	2.2.4	Net Pump Suction Performance (NPSH)	17	
2.3	Appli	cation of Centrifugal Pump in Industry	18	

2.4	Proble	ems of Centrifugal Pumps	18
	2.4.1	Cavitation	18
	2.4.2	Other Problem	19
2.5	Devel	opment of Vibration Analysis Technology	20
2.6	.6 Vibration Analysis		20
	2.6.1	Vibration Analysis in Mechanical Faults	20
	2.6.2	Measuring Vibration	21
	2.6.3	Advantage of Vibration Analysis	22
	2.6.3	Vibration Spectrum and Fast Fourier	23
		Transform (FFT)	

CHAPTER 3 METHODOLOGY

3.0	Introduction	
3.1	General Description of Equipment	25
	3.1.1 TOYOO Water Pump TKM60-1	26
	3.1.2 Accelerometers	28
3.2	Experimental Work	28
	3.2.1 Apparatus	29
	3.2.2 Vibration Analysis Experiment	31

xi

	3.2.3	Experimental Design for Preparation	34
		Failure Condition of Impeller	
	3.2.4	Performance analysis experiment	36
3.3	Devel	op Monitoring System	37
3.4	Flow	Chart of Experiment Activities	38

CHAPTER 4 RESULTS AND DISCUSSION

4.0	INTRO	DUCTION	39
4.1	Spectru	ım Analysis	39
4.2	vibration Analysis		
	4.2.1	Result of The Original Condition	41
	4.2.2	Imbalance Level 1	42
	4.2.3	Imbalance Level 2	43
	4.2.4	Clogged	44
	4.2.5	Broken Level 1	45
	4.2.6	Broken Level 2	46
	4.2.7	Broken Level 3	47
	4.2.8	Simplification of Overall Vibration Result	48
	4.2.9	The Selection of Frequency	51
	4.2.10	Level of Pump Severity	51

4.3	Performance Analysis	54
4.4	The Monitoring System From Visual Basic software.	56
	4.4.1 Simulation of Monitoring System	57

CHAPTER 5 EFFICIENT PROCEDURE FOR MONITORING AND MAINTAINING PUMP

5.0	INTRODUCTION		62
5.1	Step of Installation Pump		63
5.2	Monit	oring Pump Steps	63
	5.2.1	Attachment of Vibration Sensor	63
	5.2.2	Setting During Vibration Data Measurement	67
	5.2.3	The Ways Data Is Displayed	68
5.3	Step T	o Analyse Data	68
5.4	Step o	f Reassembly	69

CHAPTER 6 CONCLUSIONS AND RECOMMENDATION

6.0	INTRODUCTION		69
6.1	CONC	CLUSIONS	70
	6.1.1	Achievement of objective 1	70
	6.1.2	Achievement of objective 2	71
	6.1.3	Achievement of objective 3	71
6.2	Recon	nmendations	72
REFERENCES 73			
APPENDIX A		76	
APPE	APPENDIX B		79
APPE	APPENDIX C		83
APPE	APPENDIX D		87
APPENDIX E			88

LIST OF TABLES

TABLE TITLE

3.1	List of the apparatus to conduct the project experiment	28
3.2	Each stage of condition impeller failure and it description	33
4.1	Average value for vibration data at frequency 40-50 Hz	47
4.2	Average value for vibration data at frequency 100Hz	48
4.3	Result finding from using good impeller	53
4.4	Result finding from using Broken impeller	53

LIST OF FIGURES

TABLE TITLE

3.2	TOYOO Water Pump	25
3.2	Exploded Drawing and numbering of each part	26
3.3	Model Series 3214A IEPE accelerometer	27
3.4	Accelerometer and pump	30
4.5	Analyzer	30
3.6	RT Pro Photon graph finding	31
3.7	Front part of pump	31
3.8	Introduce the failure to impeller	32
3.9	Reinstalling and running the pump	32
3.10	Good impeller condition (a) and broken impeller condition (b)	35
3.11	Microsoft Visual Basic	36
3.12	Schematic flow diagrams of experimental activities	37
4.1	Result of the original condition	40
4.2	Result of Imbalance level 1	41
4.3	Result of Imbalance level 2	42

xvi

4.4	Result of clogged	43
4.5	Result of Broken level 1	44
4.6	result of Broken level 2	45
4.7	Result of Broken level 3	46
4.8	Bar graph of comparison two possibility vibration value	49
4.9	ISO 10816-1 Vibration Standard Chart	51
4.10	Graph of vibration at frequency 40-50Hz	52
4.11	Graph of the performance analysis	54
4.12	The basic panel of this monitoring system	57
4.13	Normal position of the monitoring system	58
4.14	Warning position of the monitoring system	59
4.15	Danger position of the monitoring system	60
4.16	The graph of flow rate drop displayed	61
5.1	Location to mount the accelerometer	63
5.2	Accelerometer position	64
5.3	Accelerometer with no description by debris	64
5.4	Magnetic surface	65
5.5	Orientation of accelerometer	65
5.6	Position of accelerometer	66
5.7	Analyze data	69

LIST OF SYMBOLS

Hz	=	frequency unit
In/s	=	inch per second
m ³ /s	=	meter cube per second
Ν	=	pump speed
Nm	=	newton meter
Р	=	pump discharge pressure
Ра	=	Pascal
Pk	=	peak
Pk Q	=	peak flow rate
Pk Q Q _T	= =	peak flow rate pump theoretical flow-rate
Pk Q Q _T Rev/s	= = =	peak flow rate pump theoretical flow-rate Revolution per Second
Pk Q Q _T Rev/s T _A	= = =	<pre>peak flow rate pump theoretical flow-rate Revolution per Second actual torque delivered to pump</pre>
Pk Q Q _T Rev/s T _A T _m	= = =	<pre>peak flow rate pump theoretical flow-rate Revolution per Second actual torque delivered to pump torque motor</pre>

LIST OF ABBREVIATION

CAD	=	computer aided design
CBM	=	condition based monitoring
Eq	=	equation
FFT	=	Fast Fourier Transform
hd	=	discharge head
hf	=	friction head
hS	=	suction head
ISO	=	international standard organization
NPSH	=	Net Pump Suction Performance
NPSHA	=	Net Positive Suction Head Available
NPSHR	=	NPSH Required
PVC	=	Polyvinyl chloride
RPM	=	revolution per minute
VB	=	Visual Basic

LIST OF APPENDICES

TABLETITLEPAGE

A	Gantt Chart semester 1 & 2	76
В	RT Pro Photon Software	79
С	Table data of vibration	83
D	Dimension of Impeller using CATIA CAD Software	87
E	Coding of Monitoring System by using Visual Basic Software	88

xix

CHAPTER 1

INTRODUCTION

1.0 RESEARCH OVERVIEW

In this chapter, brief introduction on centrifugal pump failure and vibration analysis. Problem statement, objectives, scope and the organization of the report are also highlighted.

1.1 CENTRIFUGAL PUMP FAILURE AND VIBRATION ANALYSIS

A centrifugal pump, also known as a centrifuge pump, uses an impeller as the primary source for its pumping action. The impeller is similar to a fan with a housing that has one small intake and a larger output, which is simply an opening. The impeller is connected to a spinning rotor that must be moved with mechanical power, in order to displace fluid. The impeller is inside a housing that lets fluid escape to a discharge pipe, where the fluid is pushed after being displaced by the impeller.

Vibration problems are most commonly associated with centrifugal pumps. The sources of vibration in centrifugal pumps can be categorized into three types such as Mechanical causes, Hydraulic causes & Peripheral causes. Level of imbalance and the level of misalignment are the important reasons of mechanical and hydraulic causes. The peripheral causes of vibration include Harmonic vibration from nearby equipment or drivers, operating the pump at critical speed. Problems with any of these issues will show up as symptoms, which include higher than normal vibration at certain key frequencies.

1.2 PROBLEM STATEMENT

For many years and in many plants still today, the set of views and theories which machinery system simply run the plant until a machine failed, deal with it and get up and running once again. If machine failed, they were repaired or a spare part was used. Little thought was given to improve equipment reliability or predicting failures. Hence, the maintenance department was a huge cost sink, and that was considered a standard part of running the business.

Include in pumping system, the pump subject to wear, erosion, cavitation, and leakage. Many pumping system problems can result from improper pump selection and operation resulting in severe deterioration of their performance and finally lead to a significant increase of operational and maintenance costs.

Fortunately, there are technologies available that can objectively measure all of these quantities in order to help us diagnose the mechanical condition of machines as well as in centrifugal pump.

As such, there is a need to apply of vibration analysis technique for monitoring the centrifugal pumps. Vibration analysis is convenient and reliable in determining the failures in their early stages and can avoid unscheduled shutdowns and expensive repair costs.

Therefore, this report highlighted the diagnoses of centrifugal pump failure by using vibration analysis.

1.3 RESEARCH OBJECTIVES

In order to accommodate the main concern and challenge stated in the problem statement, the following objectives are set up to be finding the optimum solution. These designated objectives will serve as the basis of the problem solving and also as a guideline and reference in order to complete the study. The objectives are as listed below:

- a) To find the onset failure of centrifugal pump.
- b) To implement condition monitoring system of centrifugal pump health.
- c) To develop an efficient procedure for monitoring and maintaining health of centrifugal pump

1.4 RESEARCH SCOPE

To achieve the above objective, the scope of this work generally involved the following:

a) Research on centrifugal pump application.

- b) Use vibration analysis to determine centrifugal pump failure.
- c) Use simple model of centrifugal pump for simulation and analysis.

d) Analyze on impeller deterioration.

e) Use a single speed pump motor of 2900 RPM.

1.5 ORGANIZATION OF THE REPORT

The report consists of six chapters, where each chapter represents an important build for general construction of the report.

Chapter one presents an overview and brief introduction on centrifugal pump failure and vibration analysis. Problem statement, objectives and the organization of the thesis are also highlighted. Chapter two presents a literature review which covered the general information regarding centrifugal pump and application including its general component and impeller types, followed by the literature review on basic principle and performance of centrifugal pump. In addition, an overview of centrifugal pump problem is provided in this chapter. Information of vibration analysis is also discussed in detail. The last section then consists of the measuring vibration and it benefit.

Chapter three presents about the project methodology used in this study. Section one described two main equipment that been used throughout this research. Next section is the explanation on experimental work which starting with list of apparatus, vibration analysis procedure, the condition of impeller and lastly the performance analysis procedure. Next the data collection will finalize and develop monitoring software by using software. Then it is followed with the schematic flow diagram which showing the overall activities carried out in this research.

Chapter four presents the experimental results and discussion consisting of five main sections with starting with spectrum analysis description. Next section is result from the vibration analysis and the result from the performance analysis. Than the section show the monitoring system from the Visual Basic software and the last section is developing an efficient procedure for health monitoring system to detect fault in centrifugal pump.

Chapter five presents on how to perform high quality maintenance on the equipment. Firstly, the primary focus should be to increase on pump reliability, thus decreasing maintenance time and costs which is started from proper installation steps, processing vibration monitoring steps, and reassemble step. The result is improved uptime and profits.

Chapter six finally presents the conclusions that reflect the achievements of all the objectives which were obtained throughout the study as well as the recommendations for the future research. These recommendations offered the significance and importance related to the present research.

CHAPTER 2

LITERATURE REVIEW

2.1 CENTRIFUGAL PUMP

Centrifugal pumps is a kinetic device used to move fluids which is transport fluids and liquids through piping systems that come from one reservoir or tank to a different reservoir or tank. This pump also considered to be roto-dynamic pumps because they operate via a revolving rotary impeller. One of the simplest components of equipment is centrifugal pump in process plant [1].

The mechanical energy is converting to hydraulic energy by the centrifugal force of the impeller blade for handling fluid to get a certain height or place [2].

2.1.1 Principle of Centrifugal Pump Work

A centrifugal pump is a kinetic device which is liquid entering the pump receives kinetic energy from the rotating impeller. The input power of centrifugal pump is the mechanical energy. The electrical motor is use to drive shaft driven by the prime mover or small engine and the output energy is hydraulic energy of the fluid being raised.