

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF REPRODUCING DOMESTIC WASTEWATER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (MANUFACTURING PROCESS)

by

NORAIDA DIANA BINTI KAMARUDDIN B050710057

FACULTY OF MANUFACTURING ENGINEERING 2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: Investigation of Reproducing Domestic Wastewater
SESI PENGAJIAN: 20010/11 Semester 2
Saya NORAIDA DIANA BINTI KAMARUDDIN
mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√)
SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)TERHAD(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)TIDAK TERHADLisahkan oleh:
Alamat Tetap: Blok 2-11-07, Pangsapuri Cheras Utama, Taman Cheras Utama, (Tandatangan dan Cop Rasmi)
Cheras, Kuala Lumpur.
Tarikh: Tarikh:
** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Investigation of Reproducing Domestic Wastewater" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NORAIDA DIANA BINTI KAMARUDDIN
Date	:	17 MAY 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Degree in Bachelor of Manufacturing Engineering (Manufacturing Process). The member of the supervisory committee is as follow:

Supervisor

(Signature & Official Stamp of Supervisor)

ABSTRAK

Rawatan sisa air adalah penting pada masa kini kerana meningkatnya peningkatan populasi dunia dan meningkatnya pencemaran air bersih di seluruh dunia. Keadaan menjadi lebih buruk dengan penggunaan yang sewenang-wenangnya dan pembaziran air yang semakin menjadi-jadi. Jadi, rawatan air sisa amat penting dalam memastikan kewujudan air bersih di masa akan datang. Dengan adanya rawatan air bersih, penggunaan air bersih dalam penggunaan air luaran dapat digantikan dengan air sisa yang telah dirawat. Contoh penggunaan air luaran ialah basuh kereta, siraman kebun, pam tandas, dan basuh baju. Penggunaan luaran ini mengambil sebilangan besar peratusan penggunaan air harian. Walaubagaimanapun, untuk membina system rawatan air sisa, beberapa kajian dan eksperimen perlu dilakukan kerana Malaysia tidak terlalu terdedah kepada teknologi ini Kajian yang boleh dilakukan dengan memerhati negara yang telah mengaplikasikan teknologi ini seperti Jerman, Australia, Belanda, dan Timur Tengah. Kajian ini dapat dijadikan garis panduan dalam membina system ini di Malaysia. Pembinaan system ini bermula dengan pembinaan system pengumpulan air sisa di tempat kajian. Selepas itu, beberapa sampel akan diambil dari air sisa itu. Sampel-sampel itu akan menjalani ujian pH dan ujian suhu untuk memastikan sama ada rawatan yang dilakukan berjaya atau tidak. Lebih rendah nilai pH dan suhu dari nilai air sisa yang sebenarnya adalah lebih baik. Data yang dikumpul akan dianalisis dan dikumpulkan ke dalam graf yang sesuai untuk menunjukkan hasil rawatan. Hasil rawatan dibincangkan dan beberapa cadangan diberikan untuk menambahbaik lagi projek ini di masa akan datang.

ABSTRACT

Wastewater treatment is a very crucial nowadays due to the increased of world population and the increased of clean water pollution around the world. To make matter worst people keep using the clean water with careless and wasting it. Thus, wastewater treatment is very crucial in maintaining the existence of clean water. With wastewater treatment water usage in external used can be converted by using the treated water. Example of external usage of water is car washing, garden irrigation, toilet flushing, and laundry. These external usages took large sum of percentage in daily water consumption. However, to construct a wastewater treatment, some research and experiments need to be done because Malaysia has not been exposed with this technology. The research can be done by observing the countries that have applying this technology such as Germany, Australia, Netherlands, and Middle East. The research can be guidelines to construct the The system construction started with construction the system in Malaysia. wastewater harvesting system in test site. Then, some samples will be taken from the wastewater that is collected. After that, the samples will undergo pH and temperature testing to determine whether the treatment done was successful or not. The lower the pH and temperature value from the original value, the better the treatment testing done. Then, clear test was done to do visual comparison between the sample before and after wastewater treatment. The data collected then were analyzed and group into suitable graph to show the outcome of the treatment. The results were discussed and some recommendations stated to improve the project in the future.

ACKNOWLEDGEMENT

Bismillahirrahmannirahim

The name of Almighty Allah. Grateful with the blessing .for his opportunity, a million thank to my dear supervisor En. Sivarao A/L Subramonian, whose help and give a good brilliant advice and suggestion. Whose turn me to be good person and to a brighter side. He is responsible person; give me spirit when I lose. I would like to express my heartiest appreciation to him for all his help, guidance and continuous support throughout all this time.

To my beloved father Kamaruddin Ab. Rashid, my mother Rohana Binti Hamat, my sister Nor'amilin and Noor Ain Aziantie, my brother Noor Azmin, Noor Arief Hakimie and Noor Aliff Fitri for giving me constant support ,love strength, confidence and guidance that I could not do without. May Allah bless all of you.

DEDICATION

I want to dedicate this report to my beloved father Kamaruddin Ab. Rashid, my mother Rohana Binti Hamat, my sister Nor'amilin and Noor Ain Aziantie, my brother Noor Azmin, Noor Arief Hakimie and Noor Aliff Fitri for giving me constant support, love strength, confidence and guidance that I could not do without.

Never to forget my classmates of 4 BMFP that have always be by my side for the past 4 years of my life in UTeM, with them I have been through a lot of hardship in completing my life as students in UTeM. With them I am able to know myself better and I have known many more wonderful friends. Thank you guys and to my best friends, Ana, Min, Nisa', Pah, Shakirin and Suzie who always be by side share tears and laughter together. May Allah bless all of you.

Besides that, I am also dedicate this to all the lecturers know me and give their knowledge to me. With that I am very grateful because I will never able to repay it. Please bless me with your knowledge.

TABLE OF CONTENT

ABS	TRAK	i
ABS	TRACT	ii
TAB	BLE OF CONTENT	iii
LIST	T OF TABLES	vii
LIST	T OF FIGURES	ix
LIST	T OF ABBREVIATIONS	xi
1.IN	TRODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope	4
1.5	Importance of Study	4
1.6	Expected Result	4
2.LI	TERATURE REVIEW	5
2.1	Water Parameter Definition	5
2.2	Rules and Regulations Regarding Wastewater Treatment	7
2.3	Wastewater Quality and Its Composition	11
2.3	3.1 Wastewater Quality	11
2.3	3.2 Wastewater Composition	11
2.3	3.3 Wastewater Characteristics	13
2.4	Possible Usage of Treated Wastewater	14
2.5	Quality Requirement According to Applications	14
2.5	5.1 Toilet Flushing and Laundry	14
2.6	Wastewater Fraction	15
2.7	Filtration System Elements	15
2.7	7.1 Sponge Filter	15

Maifanite Stone	16
Activated Carbon	17
HODOLOGY	20
	20 20
	20
	21
	22
	23
1 1	24
	24
5	24
	25
	23
	27
	27
	27
	28
č	29 20
· ·	29
1 (11)	31
7.3 Clear Testing	31
ULT AND DISCUSSION	32
pH Meter Testing	32
pH Value Testing Result	32
1.1 First Wash	32
1.2 Second Wash	34
1.3 Third Wash	35
Temperature Testing Result	36
2.1 First Wash	36
	Activated Carbon CHODULOGY Overview of the Methodology Approach Constant Water Parameter Variable Water Parameter Experimental Preparation Wastewater Source Wastewater Source Vastewater Daily Volume Flow Rate of Wastewater Flow Wastewater Concentration Wastewater Concentration Wastewater I Harvesting System 3.5.1.1 Type 1 Filtration System 3.5.1.2 Type 2 Filtration System Apparatur for Constructing Wastewater Harvesting System Procedure of Treated Wastewater Testing Young Are Testing 7.1 pH Meter Testing 7.2 Parts per Million (ppm) Calculations 7.3 Clear Testing PH Netur Testing Result 1.1 First Wash 1.2 Second Wash 1.3 Third Wash 1.3 Third Wash 1.3 Third Wash

4.	1.2.2	Second Wash	37	
4.	1.2.3	Third Wash	39	
4.1.	3 Chlori	ination	40	
4.	1.3.1	pH Value	40	
4.	1.3.2	Temperature	41	
4.2	Parts p	per Million (ppm) Calculations	42	
4.3	.3 Clear Test 43			
4.4	Odour Emission Test 44			
4.5	Discussion 4			
5. CO	NCLU	SION AND RECOMMENDATION	47	
5.1	Concl	usion	47	
5.2	Recon	nmendations	48	

REFERENCES

49

APPENDICES

- A
- B

LIST OF TABLES

2.1	Table of water parameter definition (Mehlhart et al, 2005)	5
2.2	Table of rules and regulations regarding wastewater treatment (Domestic	
	Greywater Treatment System Guidelines, 2005)	8
2.3	Criteria according to applications (Domestic Greywater Treatment System	
	Guidelines, 2005)	10
2.4	Wastewater (greywater) composition (Toifl M., Diaper C., and O'Halloran	
	R., 2008)	12
2.5	Faecal coliform numbers in greywater prior to storage (Jepperson and Solley, 1994)	12
2.6	Wastewater (greywater) characteristics (Draft Guidelines for the Reuse of	13
	Greywater in Western Australia, 2002).	
2.7	Quality requirement for toilet flushing and laundry (Mehlhart et al, 2005)	14
3.1	Experiment to obtain quality requirements according to applications	22
3.2	Constant water parameters	22
3.3	Variable water parameters for toilet flushing and laundry	23
3.4	Variable water parameters for surface irrigation	23
3.5	Types of concentration (en.wikipedia.org/wiki/).	26
4.1	pH value for first wash with comparison between filtration system between Type 1	32
	and Type 2.	
4.2	pH value for second wash with comparison between filtration system between	34
	Type 1 and Type 2.	
4.3	pH value for third wash with comparison between filtration system between Type 1	35
	and Type 2.	
4.4	Temperature value for first wash with comparison between filtration system	36
	between Type 1 and Type 2.	
4.5	Temperature value for second wash with comparison between filtration system	37
	between Type 1 and Type 2.	
4.6	Temperature value for third wash with comparison between filtration system	39
	between Type 1 and Type 2.	

4.7	Comparison of pH value between filtration process only and chlorination process.	40
4.8	Comparison of temperature between filtration process only and chlorination	41
	process.	
4.9	Clear test sample comparison.	43

LIST OF FIGURES

1.1	Household water usage volumes (Water Corporation, 2002)	3
2.1	Average partial water flows (litres per inhabitant and day) for private	15
	household in new buildings and sanitary rehabilitated buildings (Mehlha	ırt,
	2001).	
2.2	White and soft sponge.	15
2.3	Blue and hard sponge.	16
2.4	Maifanite stone.	16
2.5	Activated carbon, as viewed by an electron microscope (http://en.	17
	wikipedia.org/).	
2.6	PAC and GAC (http://www.cameroncarbon.com/).	18
2.7	Activated charcoal (GAC).	19
3.1	Schematic diagram summarizing the overall experimental approach	21
	undertaken.	
3.2	Type 1 filtration system.	27
3.3	Type 2 filtration System	28
3.4	pH meter (FKM laboratories).	30
3.5	Ways in using pH meter (FKM laboratories).	30
4.1	Graph pH value for first wash with comparison between filtration	33
	system between Type 1 and Type 2.	
4.2	Graph pH value for second wash with comparison between filtration	34
	system between Type 1 and Type 2.	
4.3	Graph pH value for third wash with comparison between filtration	36
	system between Type 1 and Type 2.	
4.4	Graph temperature value for first wash with comparison between	37
	filtration system between Type 1 and Type 2.	
4.5	Graph temperature value for second wash with comparison between	38
	filtration system between Type 1 and Type 2.	
4.6	Graph temperature value for third wash with comparison between	39
	filtration system between Type 1 and Type 2.	

4.7	Graph comparison of pH value between filtration process only and	40
	chlorination process.	
4.8	Graph comparison of temperature between filtration process only and	41
	chlorination process.	

LIST OF ABBREVIATIONS

BOD	-	Biochemical Oxygen Demand
cfu	-	colony form units
COD	-	Chemical Oxygen Demand
E.coli	-	Endotherms coli
EPA	-	Environment Protection Agency
EU	-	Europe United
GAC	-	Granular activated carbon
MPN	-	Most probable number
NWS	-	New South Wales
PAC	-	Powdered activated carbon
ppm	-	Parts per million
SS	-	Suspended solids
TBN	-	To be nominated
TKN	-	Total kjeldahl nitrogen
TOC	-	Total organic carbon

CHAPTER 1 INTRODUCTION

This chapter will describe the background of the research with the problem that initiated the research. Besides that, this chapter also consists of the objectives, importance of the research and expected result from the result. This chapter will describe a little bit about the research and what to expect in the next chapter.

1.1 Background

Wastewater is used-water from kitchens, bathrooms, laundry, toilets and similarly used rooms. Wastewater can be divided into two groups which are blackwater and greywater. Blackwater is the drain from toilets, which contains urine and faeces. Greywater is other part of wastewater. It is the drain from laundry, bathtubs and shower trays and kitchen wastewater. Greywater is the parts of the wastewater that will be treated into recycle water for external usage.

Acording to fbr association, greywater is chosen due to its high volume produced daily about 70 L(c*d). According to Draft Guidelines for the Reuse Greywater in Western Australia, greywater can be divided into three streams which are bathroom greywater that contributes 55%, laundry greywater contributes 34% and kitchen greywater contributes 11% of total greywater production. However, greywater production and its degree of pollution are mainly determined by the habits of the consumers and result of products of personal hygiene. Basically, greywater contain soaps, detergents, fibers from clothes, hair, suspended solids, dissolved solids, food particles, grease and oil.

Possible usages of treated greywater are believed to be toilet flushing, laundry, irrigation and infiltration. However, some experiments have to be done to obtain the quality requirement for each possible usage to determine whether it is compatible or not. Thus, a suitable water treatment should be generated to collect the greywater and treat it to achieve the respective quality requirement and water standard. The treatment consists of chemical and mechanical treatments.

Therefore, a greywater harvesting system should be constructed to collect greywater from pilot house. Then, the collected greywater will be treated with selected chemical and mechanical treatment until the quality requirement and water standard are achieved.

1.2 Problem Statement

Nowadays global water resources seem to be unable to support the needs of almost seven billion of world population. This situation worsens with the increase demand for domestic, industrial and irrigation needs and to add it up with severe rivers pollution around the world. Thus, there are some parts of the world that people cannot access to safe drinking water. According to National Water Resources Study 2000, Malaysia's water requirement will increase by 63% from 11 billion m³ (2008) to 17.7 billion m³ (2050). Thus, the study showed that, even Malaysia is blessed with abundant of rainfall; a precaution measure should be taken to prevent clean water scarcity in the future.

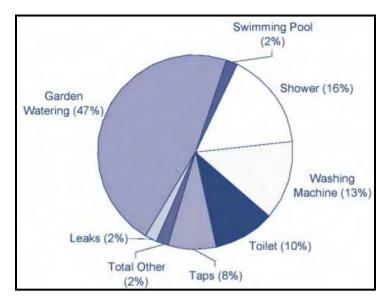


Figure 1.1: Household water usage volumes according to Water Corporation (2002).

From Figure1.1 above, it showed that 90% of household water usage is used for external use. Therefore, 900 liters of wastewater will be discharged each day into raw sewage (approximately 1000 liters distributed to a house). Hence, if there are 1000 houses, there will be 900 000 liters of wastewater each day. It such a waste because the wastewater can be recycled and reused for external usage such as toilet flushing, garden watering, car washing, and laundry. By doing this, clean drinking water can be saved and conserve the existing clean water resources.

1.3 Objective

The objectives of this research are:

- 1. To construct wastewater harvesting system;
- To treat wastewater to its respective quality requirement according to its intended used;
- 3. To reduce river pollution by treating the wastewater before discharge it into the river; and
- 4. To reduce clean drinking water usage in the external water usage area.

1.4 Scope

This research includes the study on wastewater parameter, quality, composition and characteristics. Besides that, rules and regulations regarding wastewater treatment are being investigated to understand the guidelines of the system. The quality requirement for treated wastewater regarding the intended usage need to be studied of and come out with a system that able to improve the wastewater quality. The wastewater testing decided were pH testing, temperature testing, parts per million (ppm) calculations and clear test. Then, the result of each testing will be transform into graph

1.5 Importance of Study

The primary concern in this research is the ability to achieve the quality requirement stated for each intended usage. Even if this research succeeds in achieving the quality requirement, there are some rules and regulations that need to be obeyed to avoid any danger to human, animal and plants. Besides that, there are some chemical experiments that need to be done without any mistakes to ensure the validity of the experiments. Furthermore, the harvesting system also needs to be monitored from time to time to maintain its quality.

1.6 Expected Result

At the end of the research, the study and the experiment is expected to successfully produce treated water that can be used in toilet flushing, laundry and able to be discharge into surface water. Besides that, the usage of the treated water also will not harm any human being, animals and plant.

CHAPTER 2 LITERATURE REVIEW

This chapter will focus on the facts, data, equipments and processes related to project. With this chapter, the reader will be able to understand scientific terms, equipments used, and processes used. For this project, this chapter will discussed about water parameter definition, rules and regulations regarding wastewater treatment, wastewater quality and its compositions, possible usage of the treated wastewater, and quality requirements according to applications.

2.1 Water Parameter Definition

Water parameter is a limiting factor in water quality where the parameter is used to indicate the water quality. The parameter will indicate the range that suitable according to its intended use. Thus, the range will be differ accordingly because differ water application require different range of parameter. For example, toilet flushing's water parameter range will be differ from land irrigation. All the water parameter definition used in this research is stated in Table 2.1.

Parameter	Definition
Biochemical	The amount of dissolved oxygen consumed by microbiological
Oxygen	action when a sample is incubated usually for 5 days at 20°C,
Demand (BOD)	expressed in miligrams per litre (mg/L).
Suspended	Solids retained after filtration either through glass fibre filter
solids (SS)	paper followed by washing and drying at 105°C, or by

 Table 2.1: Table of water parameter definition (Mehlhart et al, 2005).

	centrifuging followed by washing and removal of the
	supernantant liquid expressed in miligrams per litre (mg/L).
Thermotolerant	Aerobic and facultative anaerobic, gram negative, non-spore
coliforms	forming, rod shaped bacteria, distinguished from non-faecal
	coliform organisms by incubation at 44.5°C.
Total kjeldahl	A method for measurement of total nitrogen including organic
nitrogen (TKN)	nitrogen and ammonia based on wet oxidation expressed in
	miligrams per litre (mg/L). It is used in lieu of dissolved oxygen
	for intermittent process assessment.
Disinfection	A process which reduces the number of micro-organisms but does
	not sterilise or remove all micro-organisms.
Pathogens	Disease causing microbes eg. viruses, bacteria, helminths and
	protozoa.
рН	An indicator used to identify whether a liquid is acidic or basic.
Coliform	The commonly used bacteria indicator of sanitary quality of foods
bacteria	and water.
Faecel coliform	As indicator of water quality. In general, increased level of faecel
	coliforms provide a warning of failure in water treatment, a break
	in the integrity of the distribution system or possible
	contamination with pathogen.
Pseudomonas	A common bacteria that can cause disease in human and animals.
aeruginosa	
Chemical	The chemical oxygen demand is a measure of the oxidizability of
Oxygen	a substance, expressed as the equivalent amount in oxygen of an
Demand (COD)	oxidizing reagent consumed by the substance under fixed
	laboratory conditions.
Turbidity	Turbidity is a measure of the amount of particulate matter that is
	suspended in water. Water that has high turbidity appears cloudy
	or opaque. High turbidity can cause increased water temperatures
	because suspended particles absorb more heat and can also reduce
	the amount of light penetrating the water.
Temperature	Water temperature affects the ability of water to hold oxygen, the

	rate of photosynthesis by aquatic plants and the metabolic rates of aquatic organisms.
Total organic carbon (TOC)	The amount of carbon bound in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment.
E. coli	A Gram negative rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some, such as serotype, can cause serious food poisoning in humans.
Conductivity	The ability or power to conduct or transmit heat, electricity, or sound. Pure water is not a good conductor of electricity. Ordinary distilled water in equilibrium with carbon dioxide of the air has a conductivity of about 10 x 10-6 W-1*m-1 (20 dS/m). Because the electrical current is transported by the ions in solution, the conductivity increases as the concentration of ions increases.
Total phosphorus	Total phosphorus is the measure of the total concentration of phosphorus present in a water sample.

2.2 Rules and Regulations Regarding Wastewater Treatment

In constructing a wastewater treatment system, there are some rules and regulations that need to be followed in order to construct a success and reliable system. The rules and regulations constructed by the New South Wales (NSW) Health Department with the title of Domestic Greywater Treatment System Guidelines. The rules and regulations are under Part 4, Clause 43(1), Local Government (Approval) Regulation, 1999. The rules and regulations are as in Table 2.2:

 Table 2.2: Table of rules and regulations regarding wastewater treatment (Domestic Greywater Treatment System Guidelines, 2005).

Criteria	Rules and Regulations
Health and	Greywater systems (does not include bucketing) must be
Safety	dispose of greywater below the ground surface unless treated
Requirement	and disinfected to an appropriate standard.
	Greywater system must be designed and operated without direct
	contact with human and animal except for maintenance.
	No cross connection with the clean drinking water supply.
	Greywater must not be allowed to enter any stormwater
	drainage system.
	Greywater shall not be in direct contact with edible plants and
	fruits but it can be used to irrigate fruits plants.
	No opportunity for mosquito breed exists in any part of the
	greywater system.
Design Criteria	Chemical disinfectant usage shall be incorporated with separate
	disinfection contact chamber and effluent holding chamber to
	allow sufficient contact time for disinfectant.
	The system shall be designed to treat greywater waste stream
	from a minimum of eight persons and a maximum of ten
	persons, based on minimum daily flow of 90 liters per person
	daily.
	The system shall be designed to treat all nominated greywater
	streams arising from domestic premises.
	If the system is intended to install in a sewered area, the system
	shall be capable of connection to the sewer such that:
	- An overflow to the environment will not occur;
	- The operator may direct greywater to the sewer during raining
	season or circumstances adverse.
	The system shall be constructed according to design
	specifications and good trade practises to ease the maintenance