INVESTIGATION OF SIERPINSKI CARPET FRACTAL ANTENNA

MUHAMMAD FAIZ BIN ABDUL KADIR

This report is submitted in partial fulfillment of requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours

Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

April 2007

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

INVESTIGATION OF SIERPINSKI CARPET

FRACTAL ANTENNA

Sesi

2003/2007

Pengajian : 2003/200

Saya MUHAMMAD FAIZ BIN ABDUL KADIR

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

 Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

Sila tandakan (√):

SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	

TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

JKR 1230 A RUMAH GURU SEK MEN TEKNIK KOTA TINGGI, 81900 KOTA TINGGI, JOHOR (COP DAN TANDATANGAN PENYELIA) ABD SHUKUR B JA'AFAR

Pensyarah

Fakulti Kej Elektronik dan Kej Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Karung Berkunci 1200,

Ayer Keroh, 75450 Melaka

Tarikh: 9/5/07

Tarikh: 8/5/07

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with honours."

Signature

Supervisor : EN ABD SHUKUR B JA'AFAR

Date

To My loving and caring family and also to BENT pioneer student..

ACKNOWLEDGEMNET

Alhamdulillah, thanks to Almighty God Allah s.w.t with His permission and blessing to me, finally the report is completed.

I would like to thank to my honorable supervisor, En Abd Shukur bin Ja'afar, for his ideas, support and guidance throughout this work. His devotion to the needs of the student and the encouragement has made working with him true delight.

I also would like to thank and appreciation to my fellow colleagues in the sharing similar research interests. My gratitude especially goes to Shah Eazril Bin Bakri, Shahril, Nik Mohd Hafeez Bin Nik Aziz Ali, and Izan Afzan Bin Selamat due the sharing time with me to do discussion and help me to complete the project in this semester.

Lastly, I also would to thanks to all those who have helped to make this report. Warmest regards to my father, mother, sister, brother for their seamless caring encouragement and moral support that made this journey possible.

ABSTRAK

Antena pecahan sebernarnya menarik banyak minat dan perhatian ramai penyelidik and ahli sains untuk mengkaji dan mencipta antena pecahan ini kerana karakter antenna yang unik yang dikaitkan dengan sifat geometri pechan dan untuk applikasi banyak frekuensi. Kebiasaannya antenna yang berbeza digunakan frekuensi yang berbeza tetapi antenna pecahan ini di cadangkan untuk mengatasi masalah ini mengunakan saiz antena yang kecil untuk beroperasi pada banyak frekuensi. Dalam projeck ini konsep pecahan diaplikasi kepada antena tampalan segiempat sama untuk mencapai operasi banyak frekuensi dan dikenali juga sebagai antena pecahan Sierpinski dari skala lebar jalur 1 GHz hingga 10 GHz. Proses pecahan ini dekenali sebagai pembahagian. Proses reka bentuk antena ini dilakukan menggunakan perisian gelombang mikro dengan mengambil kira teknik pemadanan rintangan dengan pemancar tampalan mikro. Kemudian membuat simulasi untuk melihat kehilangan kembali dan bentuk radiasi antena tersebut. Akhir sekali, melakukan proses membuat antena tersebut menggunakan penganalisa rangkaian di makmal untuk melihat kehilangan kembali.

ABSTRACT

The fractal antenna has got an intention and interest of many researcher and scientist because of its unique characteristics that are linked to the geometrical properties of fractals. Usually different antennas are needed for different frequency band but study fractal antennas suggest some attractive solution for using a single small antenna operating several frequency bands. In this project the concept of fractal has been applied to the geometry of a square microstrip patch antenna to obtain multi band frequency also know as Seirpinski carpet fractal antenna. This project is to investigate the behavior of the Sierpinski fractal antenna in range of bandwidth 1 GHz ad 10 G GHz. And process has divided into few parts or knows as iteration. The design process of the antenna is using microwave office where it considers on impedance matching network with the micro-strip transmission line feeding. Then make a simulation to see the return loss and radiation patterns of the antenna. Lastly, proceed to hardware development by fabricate this antenna on using etching technique.

TABLE of CONTENTS

CHAPTER	TIT	LE	PAGE
	PRÓ	DJEĆT TITLE	i
	VER	RIFYING FORM	ii
	STU	DENT CONFESSION	iii
	SUP	ERVISOR APPROVAL	iv
	DED	DICATION	V
	ACK	KNOWLEDGEMENT	vi
	ABS	TRAK	vii
	ABS	TRACT	viii
	TAB	BLE OF CONTENTS	ix
	LIST	Γ OF TABLE	xiii
	LIST	Γ OF FIGURE	xiv
	LIST	Γ OF NOMENCLATURE	xix
	LIŜT	T OF APPENDIX	xxi
I	INT	RODUCTION	
	1.1	Project Synopsis	1
	1.2	Objectives	2
	1.3	Scope of Work	2
	1.4	Problem Statement	3
	1.5	Project Methodology	5

11	FKA	CTAL BACKGROUND	
	2.1	Introduction	7
	2.2	Fractal in Nature	8
	2.3	Fractal Dimension	10
	2.4	Fractal Antenna Elements	11
Ш	ANT	ENNA THEORY	
	3.1	Introduction	16
	3.2	Antenna Definition	16
	3.3	Types Of Antenna	17
		3.3.1 Wire Antenna	18
		3.3.2 Aperture Antenna	18
		3.3.3 Microstrip Antenna	19
	3.4	Antenna Properties	20
		3.4.1 Input Impedance	20
		3.4.2 Voltage Standing Wave Ratio (VSWR)	21
		3.4.3 Gain	22
		3.4.4 Radiation Pattern	23
		3.4.5 3dB Beam width (half power beam	24
		width, HPBW)	
		3.4.6 Directivity	25
		3.4.7 Bandwidth, BW	26
		3.4.8 Return Loss	27
		3.4.9 Polarization	28

IV	MIC	ROSTRIP ANTENNA	
	4.1	Introduction	30
	4.2	Basic Mirostrip	30
	4.3	Basic Mircostrip Antenna	33
	4.4	Feed Technique	34
		4.4.1 Microstrip Line Feed	34
		4.4.2 Coaxial Feed	35
		4.4.3 Aperture Coupled Feed	37
		4.4.4 Proximity Coupled Feed	38
	4.5	Analysis of Microstrip Antenna	39
v	SIEF	RPINŠKI ČARPET FRAČTAL MIČRÔŠTRIP	
	ANT	ENNA	
	5.1	Introduction	41
	5.2	Sierpinski Carpet Fractal Antenna Design	43
		5.2.1 Determine Antenna Dimension	45
	5.3	Matching Technique	46
	5.4	Design Sierpinski Carpet Fractal Antenna	47
		Using Microwave Office	
	5.5	Sierpinski Carpet Fractal Antenna	58
		With First Iteration	
	5.6	Sierpinski Carpet Fractal Antenna	61
		With Second Iteration	
VI	ANT	ENNA FABRICATION	
	6.1	Introduction	64
	6.2	Antenna Fabrication Steps	64
	6.3	Return Loss Measurement	69
		Equipment	

VII	RES	RESULT, ANALYSIS, AND DISCUSSION		
	7.1	Introduction	70	
	7.2	First Section	70	
	7.3	Second Section	74	
IX	FUT	URE WORK AND CONCLUSION		
	9.1	Conclusion	83	
	9.2	Future Work	83	
	Refe	rences	85	
	Appe	endix A	88	
	Appe	endix B	91	
	Appe	endix C	93	
	Appe	endix D	94	

LIST of TABLE

TABLE	TITLE	PAĞE
1	Table VSWR Vs Return Loss	22
2	Comparing the Different Feed	39
	Techniques	
3	The Zero Iteration Result For	71
	Simulation and Measurement	
4	The First Iteration of Return Loss	73
	Between The Simulation	
	And Measurement	
5	The Second Iteration of Return Loss	74
	Between The Simulation	
	And Measurement	
6	Show the Result for Zero Iteration	76
7	The table is summarized radiation pattern for	78
	first iteration	
8	The table is summarized radiation pattern for	82
	second iteration	

LIST of FIGURE

FIGURE	TITLE	PAGE
1	Sierpinski Carpet Fractal Antenna Zero Stage	4
	to Second Iteration	
2	Project Methodology	5
3	This Landscape Scene Was Created	9
	Mathematically Using Fractals	
4	These Mathematically Generated	9
	Plants, Created Using Fractint,	
	Are Good Examples Of How Fractals	
	Can Be Used To Model Complex	
	Geometries Found In Nature	
5	A Fern Is Example Geometry in Nature	10
	That Is Easily Modeled Using Fractal	
6	Several Stages in the Construction	12
	Of A Sierpinski Gasket Fractal	
7	The First Few Stages in The	13
	Construction of a Koch, Snowflake	
8(a)	Some Common Fractal Geometries	14
	Found In Antenna Applications: Koch Snowflakes/I	slands.
	These Are Used In Miniaturized Loop Antennas and	
	Miniaturized Patch Antennas	

8(b)	Some Common Fractal Geometries	14
	Found In Antenna Applications: Koch	
	Curves and Fractal Trees Used In	
	Miniaturized Dipole Antennas	
8(c)	Some Common Fractal Geometries	15
	Found In Antenna Applications: Sierpinski Gaskets and	
	Carpets, Used In Multi Band Antennas	
9	Antenna Basic Operation	17
10	Wire Antenna Configuration	18
11	Aperture Antenna Configuration	19
12	The Dimensions of the (A) Circular Patch	19
	Antenna and (B) Rectangular Patch	
	Antenna	
13	A Radiation Pattern for Antenna	24
14	Directivity of an Antenna	25
15	Vertical and Circular Polarization in 3-D	28
16	Microstrip Transmission Line (A)	31
	Geometry (B) Electric and Magnetic	
	Field Lines	
17	Equivalent Geometry of Quasi-Tem Microstrip Line	32
18	Microstrip Line Feed	35
19	Probe fed Rectangular Microstrip Patch Antenna	36
20	Aperture-coupled feed	37
21	Proximity-coupled Feed	38
22	Cavity model of a microstrip patch antenna	40
23	Show the Sierpinski carpet fractal antenna from	42
	Stage 0 to stage 2	
24	Design methodology for antenna dimension	44
25	Sierpinski carpet antenna dimension	46
26	Feed using quarter-wave transmission line	47
27	Creating EM structure	48

28	The square patch antenna in Microwave Office	48
	Environment	
29	The box dimension and cell size of the antenna	49
30	The dielectric layer parameter for the antenna	49
31	The boundaries of the antenna	50
32	Determined load at that point using via port	51
33	The line impedance was converting to length and width	52
34	The quarter-wave impedance was converting to length	52
	And width	
35	The actual dimension with quarter-wave transmission line	53
	Feeding	
36	After changing length and width of quarter-wave	53
	transmission line	
37	The square patch antenna in Microwave Office	54
	environment	
38	The square patch antenna in 3-D view	54
39	Creating new graph	55
40	Adding measurement to the graph	55
41	Setting project option	56
42	Analyze the EM structure	57
43	Created the antenna plot graph	57
44	Adding measurement to the graph	58
45	Sierpinski carpet with first iteration	59
46	Sierpinski carpet fractal antenna with first iteration	60
	in Microwave Office environment	
47	The Sierpinski carpet fractal antenna in 3-D view	60
48	The second stage of Sierpinski carpet fractal antenna	62
49	Sierpinski carpet fractal antenna with second iteration in	
	Microwave Office environment	
50	The Sierpinski carpet fractal antenna in 3-D view	63
51	The antenna dimension in CorelDraw Suite 12 Graphic	65

52	The actual antenna size on transparency paper	65
53	Ultra Violet Ray Exposed Equipment in PSM lab	66
54	Show the develop process	66
55	The etching tank in PSM lab	67
56	The actual antenna size from zero iteration to second	68
	Iteration	
57	R3767CG network analyzer	69
58	The simulation and measurement result for zero iteration	71
59	The simulation and measurement result for first iteration	72
60	The simulation and measurement result for second	74
	iteration	
61	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	74
	and $\Phi = 90^{\circ}$ at 1.8 GHz for zero iteration	
62	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	75
	and $\Phi = 90^{\circ}$ at 1.6298 GHz for first iteration	
63	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	76
	and $\Phi = 90^{\circ}$ at 3.99 GHz for first iteration	
64	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	76
	and $\Phi = 90^{\circ}$ at 5.6 GHz for first iteration	
65	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	77
	and $\Phi = 90^{\circ}$ at 7.96 GHz for first iteration	
66	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	78
	and $\Phi = 90^{\circ}$ at 8.81 GHz for first iteration	
67	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	79
	and $\Phi = 90^{\circ}$ at 1.63 GHz for second iteration	
68	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	79
	and $\Phi = 90^{\circ}$ at 4.99 GHz for second iteration	
69	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	80
	and $\Phi = 90^{\circ}$ at 5.45 GHz for second iteration	
70	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	80
	and $\Phi = 90^{\circ}$ at 7.68 GHz for second iteration	

71	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	81
	and $\Phi = 90^{\circ}$ at 8.68 GHz for second iteration	
72	Show the radiation pattern cutting at $\Phi = 0^{\circ}$	81
	and $\Phi = 90^{\circ}$ at 9.99 GHz for second iteration	
73	Sierpinski carpet fractal monopole antenna	83
74	Dual thickness (with metal block) edge-fed patch	84
	antenna structure	

LIST of NOMENCLATURES

E - Euclidean space

r - Ruler

D - Hausdorff dimension

Z_{in} - Input impedance

VSWR - Voltage Wave Standing Ratio

G - Gain

D - Directivity

dB - decibel

HPBW - Half Power Beamwidth

FNBW - First Null Beamwidth

BW - Bandwidth

 f_H - High Frequency

f_L - Low Frequency

f_o - Resonant Frequency

Z_L - Load impedance

Z₀ - Input Impedance

 v_0 - Light Velocity $(3 \times 10^8 m)$

 ε_r - Relative permittivity

Substrate thickness

 $\tan \delta$ - Tangent Loss of Substrate

W - Antenna Width

 $\varepsilon_{
m eff}$ - Effective dielectric constant

 $\Delta \ell$ - The fringing filed

Antenna Length L

The number of box Nn

The ratio for the length L_n

The ratio for the fractal area after the n_{th} iteration A_n

The iteration stage number n

LIST of APPENDICES

APPENDIX A - Antenna Dimension Calculation

APPENDIX B - Matching Technique Using Smith Chart

APPENDIX C - First Iteration Calculation

APPENDIX D - Second Iteration Calculation

CHAPTER I

INTRODUCTION

1.1 Project Synopsis

With the advanced of wireless communication system and increasing importance of other wireless applications, wideband and low profile antennas are in great demand for both commercial and military applications. Multi-band and wideband antennas are desirable in personnel communications system, small satellite communication terminals and other wireless application. Actually the fractal antenna has got an intention and interest of many researcher and scientist to discover and develop this fractal antenna because of its unique characteristics that are linked to the geometrical properties of fractals and multi band application. Usually different frequency band needs a different antenna, means that one antenna can operated at single frequency band. So fractal antennas suggest in this project for some attractive solution for using a single small antenna operating several frequency bands. In this project the concept of fractal has been applied to the geometry of a square microstrip patch antenna to obtain multi band frequency also know as Seirpinski carpet fractal antenna. The objective of this project is to investigate the behavior of the Sierpinski fractal antenna in range of bandwidth 1 GHz ad 10 GHz. Due to the theoretical; the antenna parameters such as size can be calculated using software (MATLAB). Then using software (Microwave Office) to do design

procedure such as patch and feeding technique and the return loss must be below -10dB to consider as a good antenna. The antenna has been fabricated and tested using network analyzer and spectrum analyzer.

1.2 Objectives

- To study concept of fractals and can be applied to the design of Sierpinski carpet fractal antenna.
- To study and analyze antenna behavior between ranges1 GHz till 10 GHz by changing certain parameters such as number of iteration, scaling factor and the element sizes.

1.3 Scope of Work

During this project there are several progresses that have to do:

1st phase: Literature Review

- Gather the information about the project via Internet, journals, magazines, published work and reference books that are related to the Sierpinski carpet fractal antenna and understand the Sierpinski fractal antenna concept.
- · Study of the software implementation (Microwave Office)

2nd phase: Calculation and analysis

 Analyzed and calculated all the parameters that related in designing the Sierpinski carpet fractal antenna such as the antenna size. 3rd phase: Software Implementation development

 Used software (Microwave Office) to design the Sierpinski carpet fractal antenna for microstrip at 1.8 GHz including feeding technique and fractal it until 2nd iteration and simulated it. The simulation result has been record.

4th phase: Hardware Development

 Proceed to fabricate the Sierpinski carpet fractal antenna on microstrip board (FR4) and feed it with SMA connector. Test the antenna and record all the result.
 Due to the result, do the comparison of the simulation and measurement.

1.4 Problem Statements

Traditionally, a wideband antenna in the low frequency wireless bands can only be achieved with heavily loaded wire antenna, which usually means different antennas are needed for different frequency bands. So in this project, the concept of a fractal has been applied to the geometry of a square microstrip patch antenna to obtain multiband frequency operation. Fractal antenna are antennas that have the shaped of fractal structures. The fractal antenna consists of geometrical shapes that are repeated. Each ones have a unique attributes. So the Sierpinski carpet is constructed using squares geometries. In order to start these types of fractal antenna it begins with a square in the plane and divided into nine smaller congruent squares where the open central is dropped. Figure 1 [5, 6, 7] below is illustration of iteration of Sierpinski carpet fractal antenna till second iteration.