

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SURFACE INTEGRITY STUDY IN EDM DIE SINKING PROCESS

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process)

by

NOOR AIZAH BT MAHAT B050710226

FACULTY OF MANUFACTURING ENGINEERING 2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK:	Surface	Integrity	Study in	EDM Die	Sinking	Process
--------	---------	-----------	----------	---------	---------	---------

SESI PENGAJIAN: 2010/11 Semester 2

Saya NOOR AIZAH BT MAHAT

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT

TERHAD

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

Lot 1187, Kampung Bintongan,

71300 Rembau,

Negeri Sembilan

Tarikh: _____

PENYELIA PSM

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Surface Integrity Study in EDM Die Sinking Process" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NOOR AIZAH BT MAHAT
Date	:	18 th MAY 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The member of the supervisory committee is as follow:

.....

Supervisor

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Projek ini membincangkan empat parameter yang boleh mempengaruhi prestasi EDM Die Sinking ketika membuat pemesinan kepada keluli dengan menggunakan elektrod tembaga berdimensi 10 mm × 10 mm. Tujuan utama kajian ini ialah untuk menyiasat kesan pada ciri-ciri pemesinan kekasaran permukaan, rekahan permukaan dan ketebalan permukaan putih yang mana dipengaruhi oleh parameter mesin. Reka bentuk eksperimen (DOE) telah digunakan untuk eksperimen ini. Kaedah Taguchi telah memilih untuk membentuk bentangan percubaan dan analisis kesan setiap parameter kepada ciri-ciri pemesinan dan meramalkan persekitaran optimum untuk parameter seperti arus kemuncak (IP), tempoh denyutan ON (ON), tempoh denyutan OFF (OFF), dan Voltan (V). Kaedah Taguchi menggunakan tiga peringkat dan 4 parameter. Semua keputusan telah buat pengesahan dengan menggunakan perisian ANOVA. Dalam siasatan ini, Die Sinking EDM AQ35L digunakan untuk kajian pemesinan. Bagaimanapun, Mitutoyo Surface Roughness Tester, SJ.301 digunakan untuk menguji kekasaran permukaan manakala Scanning Electron Microscopy, EVO 50 untuk mengukur ketebalan lapisan putih dan rekahan permukaan. Selain daripada itu, ujian pengesahan dilakukan untuk membuat perbandingan dengan meramalkan hasil. Hasil keputusan, arus kemuncak dan voltan merupakan faktor utama dalam siasatan ini terutamanya kekasaran permukaan.

ABSTRACT

This project was discussed about 4 parameters that can be effect the performance of EDM Die Sinking while machining mild steel by using copper electrode with dimension of 10 mm \times 10 mm. The main purpose of this study is to investigate the effect on machining characteristics of Surface Roughness, Crack Density and White Layer Thickness which influenced by the machining parameters set up. Design of Experiment (DOE) had applied for this experiment. Taguchi method had chosen to formulate the experimental layout and analyze the effect of each parameters on machining charcteristics and predict optimal setting for parameters like Peak Current (IP), Pulse ON Time (ON), Pulse OFF Time (OFF), and Voltage (V). Taguchi method was approach by three levels and 4 parameters. All the results had do confirmation by using Analysis of Variance (ANOVA). In this investigation, Die Sinking EDM AQ35L was used to do machining. However, Mitutoyo Surface Roughness Tester, SJ.301 was used for measuring the surface roughness while Scanning Electron Microscopy, EVO 50 was used to measure white layer thickness and crack density. Besides than that, confirmation tests were done to do comparison with the predicted result. For the result, peak current and voltage is the primary significant effect to the machining chracteristics investigated especially the surface roughness.

ACKNOWLEDGEMENTS

I wish to express lot of thanks to all individuals who had helped and guide me for whole of semester to do Final Year Project (FYP). They are many people that give me a huge of moral support which help me succeeded finished for FYP.

First of all, I would like to express a lot of thanks to Allah S.W.T to make my FYP smooth and successful. My big gratitude goes to my supervisor, Mr Mohd Shukor for his guidance and advice which without it, I would have been able to accomplish the objectives of my project. Although I am asked him many things, he always give her hands to teach and guide me for any of my difficulties do the FYP.

Secondly is dedicating my thanks to all technical staff at Manufacturing Engineering Laboratory especially to Mr Azhar Shah Bin Abu Hassan, Mr Khairul Efendy Bin Mansor and others for helping me to complete this project. They are spent their time, guide me with fully patience and give many ideas during this project.

Less but not least, I would like to thank for those who contributed directly or indirectly towards the succeeded of this study. I hope this project will be helped me before I go to work in future and also can be reference to others.

THANK YOU

DEDICATION

Lot of thanks to

My Supportive Parents Mahat B Udin Rokiah Bt Mohd Nor

My Wonderful Brothers Mohamad Hizwan B Mahat

Muhammad Najmi B Mahat

And last but not least to all my close friends and also beloved one.

Thank you for all the courage, support and prayers until I am finish successful for this project. May Allah bless you all.

TABLE OF CONTENT

Abstra	ık	i
Abstra	act	ii
Ackno	owledgement	iii
Dedic	ation	iv
Table	of Content	V
List of	fTables	vii
List of	f Figures	viii
List A	bbreviations	ix
1.0	INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of Study	4
1.4	Scope of Study	4
1.5	Report Outline	5
1.6	Gantt Chart	7
2.0	LITERATURE REVIEW	8
2.1	Electric Discharge Machining	8
2.2	Die Sinking EDM Machining Parameter	14
2.2.1	Peak Current	17
2.2.2	Pulse ON Time	18
2.2.3	Pulse OFF Time	18
2.2.4	Open Voltage	19
2.3	Surface Integrity	20
2.3.1	Effect of Machining Parameter on Surface Roughness, R_a	22
2.3.2	Effect of Machining Parameter on Crack Density	26
2.3.3	Effect of Machining Parameter on White Layer Thickness	27
2.4	Mild Steel as a Work Material	33
2.5	Copper as an Electrode	33

3.0	METHODOLOGY	36
3.1	Procedures	37
3.1.1	Flow Chart Process	38
3.1.2	Experimental Set Up	40
3.2	Design and Data Analysis	49
3.2.1	Design of Experiment	50
3.2.1.1	1 Taguchi's Method	50
3.3	Variables	53
3.3.1	Machining Parameters	53
3.3.2	Machining Characteristics	54
3.3.2.1	1 Surface Roughness, Ra	54
3.3.2.2	2Crack Density	55
3.3.2.3	3White Layer Thickness	55
3.4	Equipments	55
4.0	RESULTS	58
4.1	Experimental Result	59
4.2	Analaysis of Results	61
4.2.1	Analysis Results for Surface Roughness, Ra	61
4.2.2	Analysis Results for White Layer Thickness	67
4.3	Confirmation Test	70
4.4	Comparison of Test Results	73
4.5	Verification of Mathematical Model	74
4.5.1	Surface Roughness	75
4.6	Discussion	75
4.6.1	Surface Roughness, Ra	75
4.6.2	Crack Density	79
4.6.3	White Layer Thickness	82
5.0	CONCLUSION	89
5.1	Suggestions	89
5.2	Conclusions	90

REFERENCES	92
APPENDIX A	96
APPENDIX B	114

LIST OF TABLES

1.1	Gantt chart of project	7
2.1	Properties of Copper	35
3.1	EDM condition	40
3.2	Constant parameters during the experiment	41
3.3	Taguchi design creation	53
3.4	Design machining parameters and levels	54
4.1	Experimental results for surface roughness, Ra	59
4.2	Experimental results of white layer thickness	60
4.3	Experimental results for all run	61
4.4	ANOVA for surface roughness, Ra	62
4.5	ANOVA for white layer thickness, WLT	68
4.6	Relationship between WLT and EDM parameters	70
4.7	Confirmation test results for surface roughness, Ra	71
4.8	Confirmation test results for white layer thickness, WLT	72
4.9	Prediction and confirmation test results for surface roughness, Ra	73
4.10	Compositions of point 1	86
4.11	Compositions of point 6	87
4.12	Compositions of point 5	87

LIST OF FIGURES

2.1	PCS for EDM	10
2.2	Classification of EDM processes	11
2.3	A concept of EDM	12
2.4	Die Sinking EDM	13
2.5	Each discharge creates a crater	14
2.6	Effect of pulse current (energy) on removal rate and surface roughness	21
2.7	Effect of pulse on-time (energy) on removal rate and surface roughness	21
2.8	Three layers on EDM surface	23
2.9	Comparison of surface roughness in Die Sinking EDM with using	
	different shape of electrode	25
2.10	SEM image	27
2.11	Variation of white layer thickness at pulse ON time 20 μ s in order to	
	study the current	28
2.12	Different thickness of white layer at set up current 6 A but different	
	set up of pulse ON time	29
2.13	The surface layers in EDM work piece	31
2.14	Micrograph of white layer at 200x	32
2.15	SEM picture at 370x show the white layer thickness	33
3.1	The outline of methodology	37
3.2	The flow of process for FYP 1	38
3.3	The flow of process for FYP 2	39
3.4	Material selected is cut used band saw	42
3.5	EDM Die Sinking process	43
3.6	The result of machining process on mild steel	43
3.7	The machining plate is cut using the band saw before cleaning and	
	measurement process	44
3.8	Ultrasonic Bath Cleaner	44
3.9	Position of sample while measuring process	45
3.10	The sample is cut to get a cross section using Abrasive Grinding	

	Machine	46
3.11	Air Gun	46
3.12	Grinder and Polisher Double Platen	47
3.13	Grinding and Polishing Machine	47
3.14	Nitric Acid for etching process	48
3.15	Optical Microscope to check the microstructure	48
3.16	Taguchi method applied	52
3.17	Die Sinking EDM	56
3.18	Surface Roughness Tester	56
3.19	Scanning Electron Microscope	57
4 1		(5
4.1	Normal plot of residuals for surface roughness	65
4.2	Residual vs. Predicted response for RA in EDM process	65
4.3	Externally Studentized Residuals for Ra in EDM process	66
4.4	Interaction plot between IP and V for Ra	67
4.5	Relationship between the white layer thickness and EDM parameters	69
4.6	The surface of machining is become roughness when voltage is	
	increased from	76
4.7	Globules of debris is existed	76
4.8	The image of surface roughness for 9 trials by using EDM Die Sinking	78
4.9	Relationship between the surface roughness and EDM parameters	78
4.10	The morphology of EDM Die Sinking surface by copper electrode on	
	mild steel (SEM)	81
4.11	The image of white layer thickness under SEM with 1500 of	
	magnification	83
4.12	Diagram of ninth sample under SEM	84
4.13	Points are selected on WLT to find out the composition of materials	85
4.14	EDX analysis for point 1	85
4.15	EDX analysis for point 6	86
4.16	EDX analysis for point 5	87

LIST ABBREVIATIONS

А	-	Ampere
AC	-	Alternating Current
AISI	-	American Iron and Steel Institute
ANOVA	-	Analysis of Variance
CNT	-	Carbon Nano Tube
DC	-	Direct Current
DOE	-	Design of Experiment
EDM	-	Electrical Discharge Machining
EDX	-	Energy disperse X-ray
EW	-	Electrode Wear
FYP	-	Final Year Project
HAZ	-	Heat Affected Zone
IP	-	Peak Current
MM	-	Milimimeter
MRR	-	Material Removal Rate
PCS	-	Process Conditions Scheme
RA	-	Surface Roughness
RL	-	Recast Layer
SEM	-	Scanning Electron Microscope
SRT	-	Surface Roughness Tester
UBC	-	Ultrasonic Bath Cleaner
V	-	Voltage
WLT	-	White Layer Thickness

CHAPTER 1 INTRODUCTION

1.1 Background

Electrical Discharge Machining (EDM) technique is widely used for machining hardened steel. EDM is sometimes called with name; spark erosion machining. The most frequently used application is die-sinking EDM for mold steel fabrication and also wire cut EDM. In EDM process, chemical action is abandoned and metal is removed by the intense heat of electric sparks. EDM is uses electrical discharges or sparks to erode the work piece of material. No physical cutting force involved between electrode and work piece while do machining. The benefit of using this machine is it can be used to produce complex shape that cannot be produce by other machining.

In this study, EDM Die Sinking is selected as a machine to machining mild steel which as a work piece. Mild steel is using widely in industry or any applications because low cost, easy to form and ductility properties. It is a famously known as a standard of materials. Automotive industry and building structures is the examples of industry which using it. Besides than that, mild steel have a low carbon which makes it is more malleability. This is easy to make form into bar while also can be bent without break due of it ductility.

Although many previous researchers do researching on surface integrity, it is still lacking on information. So, this study will be investigate of the effect on parameters set up which peak current, pulse ON time, pulse OFF time, and open voltage to machining of mild steel by using EDM Die Sinking. The response factors that want to observe is more to surface integrity include surface roughness, crack density and white layer thickness. All of the parameters are set up at the machine. These parameters are supposed that have potential influence to the surface of work piece after do machining. Others of the parameters like polarity, servo speed, servo voltage and others will be set up as a constant in this study.

For support this study, copper is selected as an electrode for do machining. It is used in this study because it is suitable do machining for small to medium area. The copper characteristic is malleable, ductile and also good conductor. However, it has low chemical reactivity. Copper mostly used in electrical equipment and constructions. This is a good properties to make is as an electrode in this experiment because it have high electrical conductivity to do machining to mild steel work piece. However, the obvious properties are the wear is possible in machining and impossible if no mirror finish of machining. So this properties need to care properly while machining of mild steel. The size is selected is 10 mm \times 10 mm which the shape of electrode is square.

The machining of work piece is using EDM Die Sinking AQ35L. However, there are two types of machine that are used to study the surface integrity. There are Surface Roughness Tester (SRT) and Scanning Electron Microscope (SEM). The SRT is used is a portable types. SRT is normally common tool is used to study the surface roughness on the work piece before do analysis. It will show the results by graph on the printed paper and results display n the digital screen. SEM is another common tool to examine EDM surfaces. In this study, SEM is use to study the cracks density that occurred on the work piece and also white layer thickness. Design of Experiment had been using to investigate this study which Taguchi method is selected. Three levels, four factors and four responses need to investigate during the study. Although this is only research by machining mild steel with copper electrode by using EDM Die Sinking, hope the information can be applied in the future especially in industrial of machining.

1.2 Problem Statement

The surface integrity describes the mechanical, metallurgical, topological, and chemical conditions of the surface region (Jun, 2002). Surface roughness, crack density and white layer thickness are main goal that need to be archive in order to get better surface integrity in EDM Die Sinking process. These responses are need to measure under the surface integrity. However, practical is not perfect as a theory while do machining processes. This is happen due to free variables and related nature of process. Nowadays, overall EDM more advance which have process control and servo control that can maintain the spark gaps and optimum condition. Beside than that, overall process control is now frequently performed by Computer Numerical Control (CNC) but to maintain the variables for determine the best surface integrity at the product still an extremely difficult job.

The better of surface integrity is affected by number of factors. It become rougher when high current densities applied which give higher discharge energies, more viscous dielectric and lower frequency. In order to get better surface integrity, the optimum parameter of peak current, pulse ON time, pulse OFF time, and open voltage have to be determined. The larger inertia and higher viscosity of the liquid dielectric indicate a faster Material Removal Rate but a rougher surface finish. Pulse OFF time does not influence on surface wear but it will make machine unstable if pulse OFF time is higher. If this happen, more sparks will occurred and this will bring out more cracks on the work piece.

This research is more focus onto investigate the influence of various combination of machining parameters in EDM Die Sinking, in an attempt to optimize the material better surface integrity when using such approach and machining mild steel by using copper electrode. This research can be as a reference to others researcher in the future to do another research and do improvement for any lacking of information. Others than that, it can be as a reference and give more information to industry for doing improvement while operating EDM Die Sinking for their productions.

1.3 Objective of Study

The objectives of this study are as follows:

- a. To study the surface integrity of mild steel material
- b. To identify the suitable peak current in order to reduce surface crack density.
- c. To evaluate the performance of EDM Die Sinking on mild steel with focus on surface roughness, crack density, and white layer thickness.

1.4 Scope of Study

In order to get the best result, this research must be scoped narrower where it consists of:

- a. Parameters to be studied include peak current, pulse on time (ON), pulse off time (OFF), and open voltage.
- b. Machining mild steel material with using copper electrode
- c. Surface integrity need to be investigated includes surface roughness, crack density, and white layer thickness.
- d. As the analysis to the surface integrity, Surface Roughness Tester and SEM test will be conducted to the specimen.

1.5 Report outline

This report represents five chapters. The following outline below is content of this project:

1.5.1 Chapter 1

The first chapter of this thesis describes about background study, project objective, scope of project and problem statement.

1.5.2 Chapter 2

This chapter describe about literature review which is focus on the research and information about the project. Every fact and information which is found through journal or other references will be compared and the better methods have been chosen in this project.

1.5.3 Chapter 3

This chapter explains about the project methodology approach taken and a closer look on how the project implemented. Each achievement and selection taken when the project is implemented will be explained in detail for each stage until the project is success. This chapter also briefly describe about the step of the project, the method of analysis that used in this project, how to operate it and followed by interpretation of data. This chapter will be describing about the finding of project such as result and the analysis conducted of EDM Die Sinking machine and reconstruct. These methods are performed on ease. Analysis results are obtained in SEM test and Surface Roughness Tester.

1.5.5 Chapter 5

Discussion and conclusion achieved in this project and also future suggestion in order to improve this project.

1.6 Gantt Chart

Table 1.1: Gantt chart of project

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	L	Year			2010					╞				1		2011						
Mouto 1 2 3 4 1 <td>ž</td> <td></td> <td></td> <td>September</td> <td>October</td> <td>~</td> <td>lovembe</td> <td>_</td> <td>ecember</td> <td> </td> <td>Januar</td> <td>y</td> <td>Febr</td> <td>uary</td> <td>Ĺ</td> <td>March</td> <td>-</td> <td>ΥĻ</td> <td>lin</td> <td></td> <td>May</td> <td>~</td>	ž			September	October	~	lovembe	_	ecember	 	Januar	y	Febr	uary	Ĺ	March	-	ΥĻ	lin		May	~
1 1		INIOIIII	3 1 2 3	1 2 3	1 2	4 1		4 1	_	4 1	_	_	1 2	_	1	_	4 1	1 2	_	1	2	
2 Problem identication 2 Problem identication 1 <td>1</td> <td>Confirmation title</td> <td></td> <td>\square</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	Confirmation title												\square								
3 Objective & scope identification 4 Polycit briefing 5 Received on information 6 Execute on information 7 Chapter 1: Introduction 8 Non-experimentation 9 Non-experimentation 6 Execute on information 7 Chapter 1: Introduction 9 Non-experimentation 1 Non-experimation 1<	2																					
4 Project briefing 5 Satching information 6 Satching information 7 Satching information 7 Chapter 1-introduction 8 Chapter 1-introduction 8 Chapter 1-introduction 9 Chapter 2-introduction 10 Secondary P	ŝ													\vdash								
5 Searching information Image: Searchincolubr Image: Searching information	4																					
6 Exerute on infomation 1	S										\vdash			\vdash								
7 Chapter 1: Introduction 8 Chapter 2: Introduction 8 Chapter 2: Introduction 8 Chapter 2: Introduction 8 Chapter 2: Intraduction 8 Chapter 2: Introduction 8 Chapter 2: Intraduction 8 Chapter 2: Introduction 8 1 9 1 9 1 9 1 9 1 9 1 9 1 </td <td>9</td> <td>Execute on information</td> <td></td>	9	Execute on information																				
8 Chapter 2. Literature review 9 0 <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5																					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8																					
10 Sample preparation 1 1 1 Process preparation 1	6																					
11 Process preparation 1 Process preparation 1 Process preparation 1 1 Process preparation 1 1 Process preparation 1 1 Process preparation 1<	1	Sample preparation																			_	
12 Collecting data & running progress 1	1	Process preparation																				
13 Resulta analysis & data 1 </td <td>1</td> <td>Collecting data & running progress</td> <td></td>	1	Collecting data & running progress																				
14Capaber 4; Result & discussion11 <td< td=""><td>Τ</td><td>Result analysis & data</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Τ	Result analysis & data																				
15 Chapter 5: Conclusion 1 <td>1</td> <td></td>	1																					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1																					
17 Report review 1 1 Report review 1	1																					
18 Report completion 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	,	Report review												_								
19 PSM 1 submission 1	1,	Report completion																				
20 Presentation 1 <	1	PSM 1 submission																			_	
21 PSM 2 submission 1	21	Presentation																				
22 Presentation	2																					
	5	Presentation																				

Information:

= Planning Work = Holiday

~

CHAPTER 2 LITERATURE REVIEW

EDM is a non-conventional machining process that very interesting to do a research due to the specifications and it performance. It has so many advantages to the user which especially when do machining to Mild Steel as for an example. In this chapter, deeply explanation and review from previous researcher will be included. This review can be as a guide for the experiment later.

2.1 Electric Discharge Machining

Previous researcher until today, do research about EDM in two kinds of research. One is called the modeling technique and the other is called the novel technique (Sreebalaji, 2010). The modeling technique is:

- a. Mathematical modeling
- b. Artificial intelligence
- c. Optimization techniques such as regression analysis, artificial neural network, genetic algorithm, etc.

The modeling technique is used to authorize the efforts of input parameters on output parameters. This is happened because EDM is a complex process machining which have many input parameters such as:

- a. Machining depth
- b. Tool radius
- c. Pulse on time
- d. Pulse off time
- e. Discharge current
- f. Orbital radius
- g. Radial step
- h. Offset depth
- i. Output parameters like material removal rate and surface quality

For the novel techniques, it is more focus on how conventional or unconventional machining principles can be integrated to EDM. This integration will be improving the efficiency of machining processes to get better Material Removal Rate (MRR) and surface quality. The previous researchers have been research about the novel techniques in EDM from 1996.

EDM is a non-conventional machining process. EDM is one of the most commonly used non-conventional machining methods and has unique characteristics in that it is basically a non-contact type thermal machining process and can be equally effective, irrespective of the hardness of the work material (Singamneni, 2010). EDM is widely used of technique in the industry for high precision machining by using all the conductive materials likes graphite, metals, metallic alloys and other ceramic materials which not care about hardness. It had been used with widely at manufacturing industrial. A machining process and, more broadly, any manufacturing process, can be represented by the Process Conditions Scheme (PCS), which is the diagram used to analyse the condition features of machining and conjugate (Yao, 2005). According to Yao studied that using the process conditions scheme, the correlations and possible integrations between different processes are more intuitive than directly examining the details of individual processes. At the base, can see it represents interactions such as thermal and mechanical: