

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF MULTI VACUUM MANIFOLD FOR SEMICONDUCTOR INDUSTRY USING CAD TOOL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design)

by

TAN SZE TIAN B050710107

FACULTY OF MANUFACTURING ENGINEERING 2011

ALL BI	LAVELS ARE
ALL DUNY	
* 411	No :

SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESA	HAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: Design and Analys Industry Using Cad Tool	is of Multi Vacuum Manifold for Semiconductor
SESI PENGAJIAN: 20010/11	Semester 2
Saya TAN SZE TIAN	
mengaku membenarkan La Teknikal Malaysia Melaka (poran PSM ini disimpan di Perpustakaan Universiti UTeM) dengan syarat-syarat kegunaan seperti berikut:
 Laporan PSM adalah hak Perpustakaan Universiti untuk tujuan pengajian Perpustakaan dibenarka pertukaran antara instit **Sila tandakan (√) 	k milik Universiti Teknikal Malaysia Melaka dan penulis. Teknikal Malaysia Melaka dibenarkan membuat salinan sahaja dengan izin penulis. An membuat salinan laporan PSM ini sebagai bahan tusi pengajian tinggi.
	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	(Mengandungi maklumat TERHAD yang telah ditentuka oleh organisasi/badan di mana penyelidikan dijalankar
	Disahkan oleh:
Tian	INTER-
Alamat Tetap:	Allowy
77, Taman. Koh Cheng San	PENYELIA PSM
Kampung Tengah,	TAUFIK
85000 Segamat, Johor.	Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka
Tarikh: 18/5/2011	Tarikh: 18/5/2011

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Multi Vacuum Manifold for Semiconductor Industry Using CAD Tool" is the results of my own research except as cited in references.

Signature	:	Tian
Author's Name	:	Tan Sze Tian
Date	:	18.5.2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Degree in Bachelor of Manufacturing Engineering (Manufacturing Design). The member of the supervisory committee is as follow:

Hay--.

Supervisor

TAUFIK Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

ABSTRAK

Multi vacuum manifold adalah tajuk untuk mengkaji kecekapan aliran udara dalam sistem vakum cekaman dalam industri semikonduktor. Tujuan kajian ini adalah untuk mengenali ciri-ciri mereka manifold dalam sistem vakum dan menganalisis hasil dasar pada perisian simulasi. Aliran udara adalah kajian utama pada sistem manifold. Daripada maklumat dikumpulkan, penurunan tekanan, jenis aliran yang terlibat, dan rekaan yang kurang sesuai adalah faktor yang berpengaruh terhadap kecekapan aliran di manifold. Ciri-ciri yang terlibat dalam rekaan manifold akan digunakan untuk kajian ini. Ciri-ciri tersebut meliputi berbagai saiz saluran masuk, jumlah saluran digunakan dan jarak antara saluran yang digunakan. Peranti software CAD yang dipilih untuk dilakukan kajian ini adalah SolidWorks dan SolidWorks Flow Simulation untuk mencipta dan mensimulasikan hasil rekaan, menurut hasil diperolehi, rekaan di mana jumlah luas permukaan untuk bahagian udara masuk kurang atau sama dengan udara keluar menunjukkan keputusan yang lebih baik bagi kelajuan dan tekanan sedutan bahagian masuk. Jarak perjalanan lagi oleh udara dari bahagian masuk sampai bahagian keluar juga mempengaruhi keputusan yang diperolehi. Untuk kajian di masa depan, rekaan boleh mempertimbangkan adalah kajian terhadap keseluruhan sistem supaya mendapatkan keputusan yang lebih baik. Selain itu, perisian lain seperti Ansys boleh digunakan untuk mendapatkan hasil simulasi yang lebih baik. Dan rekaan harus dibandingkan dengan produk yang ada tersedia di pasaran, maka optimasi boleh dilaksanakan.

ABSTRACT

Design and analysis of multi vacuum manifold in semiconductor industry using CAD tool is a title to study efficiency of flow in vacuum gripping system in semiconductor industry. The objective of this study was to investigate the parameter of designing manifold in vacuum system and analyze the results base on simulation software. Air flow was main study on manifold system. From literature review, pressure drop, type of flow involved, and improper design are the factors influence on efficiency of flow in manifold. The study of multi vacuum manifold was carried out parameter involved in to the designs. These designs are including various size of inlet, number of inlet used and the distance between the inlets used. The CAD software selected for undertaken the study were SolidWorks and SolidWorks Flow simulation for creating and simulating the result of the designs. As the result obtain, the design in which total cross section area inlets is less or equal to out resulted better value of velocity and suction pressure distributed in each inlet. The longer distance travels by fluid from inlet to outlet also affect the result obtained. For future study, the design can consider design with manifold system in order obtain better result. Besides, other software such as Ansys can be used for better simulation result. And the design should compare to existing product available in the market, hence the optimization can be implemented.

ACKNOWLEDGEMENT

Here, I would like to thank for all the help that was offered to me when I was at a point of needing help. Thank for any help given in advice, moral support or guide in completing my PSM I report. Besides that, I would also like to acknowledge the help and guidance given to me by my supervisor, En Taufík as he's always there for me despite the late hours and the never ending meetings. Apart from that, I would also like to acknowledge the help that was offered to me by my course-mates and my friends whom guided and peer pressuring so that I get in the right track of completing this report.

DEDICATION

This report and the whole effort that was given into coming up with it is dedicated to my very own parents, who not only believed in me but has also always been there for me when I needed support the most. Their supports are the effort for me in completing my report. Besides, when I felt hard and really need help in collection information for my report, there were someone always been here giving a lot of advices and guides to me. Thanks, my friends. On the other hand, I would like to dedicate this to my supervisor, En. Taufik, given me a lot of help and guide during completing this report.

TABLE OF CONTENT

Abst	rak		i
Abst	ract		ii
Ackn	owledge	ement	iii
Dedi	cation		iv
Table	e of Con	tent	v
List o	of Tables	S	ix
List o	of Figure	es	xi
List o	of Abbre	eviations	xiv
1.	INTR	RODUCTION	1
1.1	Introd	luction	1
1.2	Backg	ground	2
1.3	Proble	em Statement	3
1.4	Objec	ctive	4
1.5	Scope	e of Project	4
1.6	Resea	rch Organization	4
2.	LITE	CRATURE REVIEW	6
2.1	Introd	luction	6
2.2	Vacu	um	6
2.3	Vacu	um System	7
	2.3.1	Vacuum Generation	7
		2.3.1.1 Vacuum Pumps	8
		2.3.1.2 Vacuum Generator	9
		2.3.1.3 Vacuum Generator vs. Vacuum Pump	10
	2.3.2	Manifold	11
		2.3.2.1 Type of Manifold Design	12
		2.3.2.2 Vacuum Manifold	13
		2.3.2.3 Types of Vacuum Manifold System	14
		2.3.2.4 Designing Parameter	15

2.4	Fluid	Flow	17
	2.4.1	Type of Flow	17
	2.4.2	Head Loss	18
		2.4.2.1 Major Loss	18
		2.4.2.2 Minor Loss	19
3.	MET	HODOLOGY	23
3.1	Introd	luction	23
3.2	Flow	Chart	24
3.3	Desig	n Planning	25
	3.3.1	Manifold Design Parameter	25
		3.3.1.1 Distance between Inlet	26
		3.3.1.2 Size of Inlet and Outlet	26
		3.3.1.3 Number of Inlets Used	27
	3.3.2	Design Tool Selection	27
		3.3.2.1 SolidWorks	28
		3.3.2.2 SolidWorks Flow Simulation	28
	3.3.3	Product Design Development	28
	3.3.4	Development of Simulation Process	30
4.	DESI	GN DEVELOP AND RESULT	32
4.1	Introd	luction	32
4.2	Multi	-Vacuum Manifold (Reference Model)	32
4.3	Study	Design Parameters	34
	4.3.1	Number Inlets of Multi-Vacuum Manifolds with Constant	
		diameter	34
		4.3.1.1 2-Inlets	35
		4.3.1.2 3-Inlets	36
		4.3.1.3 4-Inlets	37
		4.3.1.4 5-Inlets	38
		4.3.1.5 6-Inlets	39
		4.3.1.6 7-Inlets	40
		4.3.1.7 8-Inlets	42

	4.3.2	Size Inlets with Constant Number of Inlets	43
		4.3.2.1 6mm Diameter	44
		4.3.2.2 6.5mm Diameter	45
		4.3.2.3 7.5mm Diameter	46
		4.3.2.4 8.5mm Diameter	47
		4.3.2.5 10mm Diameter	48
	4.3.3	Distance between Inlets with Constant Number of Inlets	49
		4.3.3.1 12mm Distances	49
		4.3.3.2 15mm Distances	51
		4.3.3.3 18mm Distances	52
		4.3.3.4 20mm Distances	54
	4.3.4	Multi-Vacuum Manifold with Diameter Base on $A_1=A_2+A_2$	55
		4.3.4.1 2 Inlet with 10mm Diameter	56
		4.3.4.2 3 Inlet with 8.5mm Diameter	57
		4.3.4.3 4 Inlet with 7.5mm Diameter	58
		4.3.4.4 5 Inlet with 6.5mm Diameter	59
		4.3.4.5 6 Inlet with 6mm Diameter	60
		4.3.4.6 7 Inlet with 5.5mm Diameter	61
		4.3.4.7 8 Inlet with 5mm Diameter	63
	4.3.5	Various Sizes of Inlets in a Manifold	64
		4.3.5.1 7.0mm Diameter Inlets	65
		4.3.5.2 6-7-7-7-6mm Diameter Inlets	66
		4.3.5.3 6-6-7-7-6-6mm Diameter Inlets	68
		4.3.5.4 5-6-7-7-6-5mm Diameter Inlets	69
5	RESU	ULT ANALYSIS AND DISCUSSION	71
5.1	Introd	uction	71
5.2	Discus	ssion on Parameter Design	71
	5.2.1	Reference Model	71
	5.2.2	Number Inlet of Multi Vacuum Manifolds with Constant Diameter	72
	5.2.3	Size Inlets with Constant Number of Inlets	74
	5.2.4	Distance between Inlets with Constant Number of Inlets	76
	5.2.5	Multi-Vacuum Manifold with Diameter Base on $A_1=A_2+A_2$	78

	5.2.6	Various Sizes of Inlets in a Manifold	81
5.3	Summar	y of Study Parameters	83
6	CON	CLUSION AND RECOMMENDATION	86
REFERENCES			88
APPENDICES		90	
А	Gantt	Chart I	

Gantt Chart II

В

LIST OF TABLES

2.1	Vacuum Generator vs. Vacuum Pump	11
4.1	Simulation result of reference model by using SolidWorks	33
4.2	Result of simulation for 2 inlets vacuum manifold	35
4.3	Simulation result for 3 inlets vacuum manifold	36
4.4	Simulation result for 4 inlets vacuum manifold	37
4.5	Simulation result for 5 inlets vacuum manifold	38
4.6	Simulation result for 6 inlets vacuum manifold	39
4.7	Simulation result for 7 inlets vacuum manifold	41
4.8	Simulation result for 8 inlets vacuum manifold	42
4.9	Result for 6mm diameter inlets	44
4.10	Result for 6.5mm diameter inlets	45
4.11	Result for 7.5mm diameter inlets	46
4.12	Result for 8.5mm diameter inlets	47
4.13	Result for 10mm diameter inlets	48
4.14	Analysis result of vacuum manifold with 12mm distance inlets	49
4.15	Analysis result of vacuum manifold with 15mm distance inlets	51
4.16	Analysis result of vacuum manifold with 18mm distance inlets	53
4.17	Analysis result of vacuum manifold with 20mm distance inlets	54
4.18	Analysis result of 2 inlets with 10mm diameter manifold	56
4.19	Analysis result of 3 inlets with 8.5mm diameter manifold	57
4.20	Analysis result of 4 inlets with 7.5mm diameter manifold	58
4.21	Analysis result of 5 inlets with 6.5mm diameter manifold	59
4.22	Analysis result of 6 inlets with 6mm diameter manifold	60
4.23	Analysis result of 7 inlets with 5.5mm diameter manifold	62
4.24	Analysis result of 8 inlets with 5mm diameter manifold	63
4.25	Simulation result of 7mm diameters inlets vacuum manifold	65
4.26	Simulation result of 6, 7,7,7,7 and 6mm diameter inlets manifold	66
4.27	Simulation result of 6, 6,7,7,6 and 6mm diameter inlets manifold	68
4.28	Simulation result of 5, 6,7,7,6 and 5mm diameter inlets manifold	69

5.1	Total cross section area	80
5.2	Result of discussion	83
5.3	Comparison result in between parameter groups	84

LIST OF FIGURES

1.1	Output Structure of the E&E Industry in 2007 (Jan-Nov)	2
2.1	Vacuum range	7
2.2	Vacuum pump	9
2.3	Vacuum generator/ejector	9
2.4	End manifold	12
2.5	Center manifold	12
2.6	Parallel manifold	12
2.7	Linearly tapered distribution manifold	13
2.8	Concave-down contoured distribution manifold	13
2.9	Concave-down contoured distribution manifold	13
2.10	Multiple cup manifolds used in vacuum system	14
2.11	Different between centralized and decentralized systems	15
2.12	Proper design of manifold	16
2.13	(a) Experiment to illustrate type of flow. (b) i) Laminar ii) Transitional	
	iii)turbulent	17
2.14	Entrance flow condition and loss coefficient	20
2.15	Entrance loss coefficient as a function of rounding of the inlet edge	20
2.16	Loss coefficient for sudden contraction	21
2.17	Loss coefficient for sudden expansion	21
2.18	Coefficient of fitting component	22
3.1	Vacuum manifold system	25
3.2	Distances between inlets in various designs	26
3.3	Various sizes of inlets for various manifold designs	26
3.4	Number of inlets used in a same length of pipe	27
3.5	Manifold block generated using SolidWorks	29
3.6	Design of vacuum manifold with manifold block with suction tube	29
3.7	Work environment of SolidWork Flow Simulation	30

4.1	Multi-vacuum manifold with 4 inlet a) Isometric view b) Cross	
	section view	33
4.2	a) Velocity of flow inside manifold b) Pressure distributed inside	
	manifold	34
4.3	2 inlet vacuum manifold	35
4.4	3 inlets vacuum manifold with flow trajectories	36
4.5	4 inlets vacuum manifold with flow trajectories	37
4.6	5 inlets vacuum manifold with flow trajectories	38
4.7	6 inlets vacuum manifold with flow trajectories	39
4.8	7 inlets vacuum manifold with flow trajectories	40
4.9	8 inlets vacuum manifold with flow trajectories	42
4.10	6mm diameter inlets with flow trajectories	44
4.11	6.5mm diameter inlets with flow trajectories	45
4.12	7.5mm diameter inlets with flow trajectories	46
4.13	8.5mm diameter inlets with flow trajectories	47
4.14	10mm diameter inlets with flow trajectories	48
4.15	Vacuum-manifold with 12mm distance between inlets	49
4.16	Vacuum-manifold with 15mm distance between inlets	51
4.17	Vacuum-manifold with 18mm distance between inlets	52
4.18	Vacuum-manifold with 20mm distance between inlets	54
4.19	2 inlets with 10mm diameter manifold	56
4.20	3 inlets with 10mm diameter manifold	57
4.21	4 inlets with 10mm diameter manifold	58
4.22	5 inlets with 10mm diameter manifold	59
4.23	6 inlets with 10mm diameter manifold	60
4.24	7 inlets with 10mm diameter manifold	61
4.25	8 inlets with 10mm diameter manifold	63
4.26	Manifold with all 7mm diameter inlets	65
4.27	Manifold with 6, 7,7,7,7 and 6mm diameter inlets	66
4.28	Manifold with 6, 6,7,7,6 and 6mm diameter inlets	68
4.29	Manifold with 5, 6,7,7,6 and 5mm diameter inlets	69

5.1 Mass flow rate of number inlets multi vacuum manifold with constant

	diameter.	73
5.2	Velocity of flow in multi number inlets vacuum manifold	73
5.3	Dynamic pressure distributed in multi inlets vacuum manifold	74
5.4	Mass flow rate of 4 inlets manifold with different sizes	75
5.5	Velocity distributed in 4 inlets vacuum manifold with different sizes	76
5.6	Pressure distributed in 4 inlets vacuum manifold with different sizes	76
5.7	Mass flow rate for different distances between vacuum manifold inlets	77
5.8	Velocity of vacuum manifold with different distance between inlets	78
5.9	Pressure distributed between inlets of vacuum manifold	78
5.10	Mass flow rate of multi inlets vacuum manifold	79
5.11	Velocity distributed in each inlet of multi inlets vacuum manifold	80
5.12	Pressure distributed in multi vacuum manifold	80
5.13	Mass flow rate of manifold with varies sizes in a design	82
5.14	Velocity in each inlet of vacuum manifold with varies sizes	82
5.15	Dynamic pressure distributed in each inlet	83

LIST OF ABBREVIATIONS

2D/3D	2 Dimensional/3Dimensional
ANSYS	Engineering simulation software
CAD	Computer Aided Design
CFD	Computational Fluid Dynamics
E&E	Electrical and Electronic
IC	Integrated circuit
PWBs	Printed Wiring Boards

xiv

CHAPTER 1 INTRODUCTION

1.1 Introduction

Manifold is a pipe that has several lateral outlets to or from other pipes. It is used to drive the fluid flow inside the pipe. There are many types of manifold are design and used around us, such as gas manifold, exhaust manifold, hydraulic manifold and etc. Each of the manifolds has different functions depend on it design.

Vacuum manifold is the manifold that used in connecting equipments to vacuum source which is creating the vacuum state in the system. It used for air extraction process for a certain process. Most of the vacuum manifold used in automotive field in industry.

In semiconductor industry, vacuum manifolds are mostly used in pick and place machinery and holding device. The manifold is used to connect the components such as suction pads to the vacuum source. The vacuum source will extract the air inside the suction pad through manifolds and create a low pressure condition inside the suction pad. Since the air pressure at atmosphere is greater than pressure between item and suction pad, it encourages the items to push up or stick on the suction pad. The items are normally referred to PWBs (printed wiring boards), ICs or other small components.

The efficiency of the flow depends on the design of manifold. The proper design of the manifold will make the fluid distributed uniformly to all the outlet or branch of manifold. The design also can control the fluid flow rate through the design of the size manifold. Besides size of the manifold, the array or arrangement of the outlets manifold also have a great effect to fluid flow.

For the multi holding device used in semiconductor industry is quite different with the holding device used in automotive industry. The design of the manifold is depend on the design of suction pad used. Proper design of manifold will make the air extract uniformly to each area in the suction pad.

1.2 Background

Electrical and electronic industry is the leading industrial sector and economy growth in Malaysia. Malaysia's electronic industries have been developing for over least 30 years and become the largest the contributor to the country in manufacture and export electronic components. In 2006, exports of E&E products amounted to 61.7% of total manufactured exports. The industry had created 36.6% of total employment in the manufacturing sector. (MIDA, 2008)

The electrical and electronic industry comprise of 4 sub-sectors, which are electronic components, industrial electronics, consumer electronics and electrical product. As the result show in the Figure 1, electronic components are the largest contribute to electrical and electronic industry.

Figure 1.1: Output Structure of the E&E Industry in 2007 (Jan-Nov) (Department of Statistic)

Semiconductor industry is the industry which is rapidly growth under the electrical and electronic industry. Today, semiconductor is the major part of electrical and electronic industrial sector in Malaysia. The main activities involved in semiconductor industry are the assembly and testing of semiconductor devices, which include microprocessors, memory chips, power ICs, linear ICs, opto devices and other logic and discrete devices. Besides, semiconductor industries also involved in silicon wafer processing, wafer fabrication and chip design. The semiconductor companies that involved in this sector are Intel, AMD, Infineon, Toshiba, STMicroelectronics, and etc. (MGCC, 2009)

The trend of the technology development in the world, it has increase the demand of semiconductor in output of electric and electronic sector to the market. In 2007, the product of the electrical and electronic is the largest contributor to manufactured export with shared 58.9%. (MGCC, 2009)

The growth of semiconductor industry in industrial sector also affect to development of automation technologies. These technologies are used in solving the problems of automated operation in machinery of assembly, handling, inserting and etc. in order to increase the output of productivity in industries. Vacuum technology is the technology that is widely used in semiconductor industry for the purpose of handling and inserting electronic components.

1.3 Problem Statement:

Today, vacuum is involved in most every automated operation in most industrial sector. For semiconductor industries, almost all the machines are operated simultaneous with vacuum system such as pneumatic. The problems faced are not every machine is operated in optimize condition especially the vacuum manifold system in pick and place machinery.

The first problem is occurs in the suction pad. The suction pad cannot hold all the items efficient in a short time. There are various times taken to extract the air from the suction pad. Means the vacuum generated is not uniformly and the time taken is long until all the air is extracted.

Using existed products in the market. Most of the industries are using the manifold product that can found in the market and just design as the function need for the machine. They do not have time to make analysis whether single outlet or multi outlet manifold is better for their special machine use especially to suction pad used.

The manifold design is not optimized. They do not have any experiment to test the manifold design. The lack of the experimental data make designer unable to confirm whether the system is optimized to the vacuum flow. Therefore, they are doing many modifications from time to time in order to make sure that the system can function as needed.

1.4 Objective:

- i. To investigate the design parameters of vacuum manifold.
- ii. To design parameters of manifold using CAD tools.
- iii. To simulate the design parameter and analyze the better parameter for manifold design.

1.5 Scope of Project

In this study, design and analysis were to be concerned on the study of multi vacuum manifold. The design aspect were carried out in this study were the number of the inlets, diameter, and distances of inlets used in manifold design. For the analysis aspect, it was concerned on velocity of flow and pressure distribution in vacuum manifold for various parameter designs. Other aspects were not contain in this study.

1.6 Structure of the Reports

This report are contain with 6 chapter base on the study of the multi vacuum manifold. The following statements have described how the project was going on through each chapter.

Chapter 1: Introduction

This chapter is simply describe the vacuum manifold and it uses in semiconductor industries. Then, followed by the problem had faced during selecting and using manifold system.

Chapter 2: Literature Review

Describe the use of vacuum in a certain application and parameters consideration for manifold design.

Chapter 3: Methodology

This chapter will describe how the study will going on in 2 main phases, designs planning and designs simulation.

Chapter 4: Design and Result

In this chapter, various parameter design of manifold will develop by using CAD tool and they will simulate by using CFD software.

Chapter 5: Analysis and Discussion

Discuss and analysis on simulation results according to the designs. The result will show which parameter would be better use for the certain purpose used in semiconductor industries.

Chapter 6: Conclusion

To simplify the study with the analysis of simulation results for manifold parameters designs.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Vacuum manifold is one of the media used to connect the components to vacuum source of the particular machine or equipment used in industry. For semiconductor industry, most of vacuum manifold is used simultaneously with vacuum system in vacuum holding devices. The main components that are using in vacuum holding devices are suction cup or suction pad. Manifold is function as the tubing that drives the air flow in and out of the system.

2.2 Vacuum

According to O'Hanlon (2003), a vacuum is a space from which air or other gas has been removed. Amount of air removed are depends on the application and is done for many reasons.

While Bannwarth (2005) was state that vacuum is the state of a gas, the particle density of which is lower than the one of the atmosphere on the earth's surface. As within certain limits the particle density depends on place and time, a general upper limit of vacuum cannot be define.

In practice, the state of a gas can mostly be defined as vacuum in cases in which the pressure of the gas in lower than atmosphere pressure, i.e. lower than the air pressure in the respective place.