STUDY AND DESIGN SOLAR TRACKER SYSTEM

MOHD ZAFIFI B MUSTAFA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)"

Signature	:
Supervisor I	: En. Herdy Rusnandi.
Date	:

STUDY AND DESIGN SOLAR TRACKER SYSTEM

MOHD ZAFIFI B MUSTAFA

This report is presented in partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM)

> > JUNE 2012

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature:	
Author:	
Date:	

Especially for beloved mom, dad and family

ACKNOWLEDGEMENT

Syukur alhamdulillah. Thanks to Allah (SWT) because his bless giving me the strength to complete my PSM project. I would like to extend my gratitude to my project supervisor, Mr. Herdy Rusnandi, for his ideas, time and help. Thanks also for guiding me throughout this period of time. Without his guidance and support, I may not be able to achieve the goals of this project.

A very special thanks to all my lecturers who had teaches me this far. To all my friends who gave their support to construct my project. Lastly, thanks also to my parent for their love and encouragement. Without their support and confidence in me, I won't have made until this far.

Not to forget also, I like to thank all the technicians who are the most helping in the laboratory during making this project.

THANK YOU

ABSTRACT

Solar energy is the primary energy to continue the process of life in the earth system especially for human, animal and plants. As we know, solar energy is clean, environmentally friendly and definitely does not produce any pollution. This energy does not cause damage to natural resources and most importantly solar energy is the one of the most popular sources of energy and fastest growing in the world. To ensure the use of solar energy at the maximum level, a solar tracking system should be developed. This is because in order to maximize the utilization of solar energy, solar panel must be constantly aligned towards the direction of the sun. So, the function of the solar tracking system is to ensure that the solar panel is always parallel to the sun for the maximum energy output. This thesis will discuss the development of the dynamic solar tracker compared to static solar tracker. A solar tracking system is designed, implemented and experimentally tested. The potential and advantages of proposed solar tracker together with analysis and improvement for the future are shown.

ABSTRAK

Tenaga suria merupakan tenaga utama bagi meneruskan proses kehidupan dalam sistem bumi terutamanya kelansungan hidup manusia, haiwan dan juga tumbuhan. Seperti yang di ketahui, tenaga solar adalah bersih, mesra alam sekitar dan semestinya tidak menghasilkan sebarang pencemaran. Tenaga ini tidak menyebabkan kerosakkan sumber semulajadi dan yang paling penting tenaga ini merupakan salah satu sumber tenaga yang popular dan paling pesat berkembang di dunia. Bagi memastikan penggunaan tenaga solar ini pada tahap maksimum, satu sistem penjejak solar perlu dibangunkan. Ini kerana untuk memaksimumkan penggunaan tenaga solar, panel solar mestilah berada pada kedudukan selari dengan matahari. Jadi fungsi sistem penjejak solar ini adalah untuk memastikan panel solar sentiasa selari dengan matahari bagi mendapatkan tenaga keluaran yang maksimum. Tesis ini akan membincangkan tentang pembangunan penjejak solar dinamik berbanding dengan penjejak solar statik. Penjejak solar ini direka, dilaksanakan dan diuji. Potensi dan kelebihan penjejak solar ini bersama analisis serta penambahbaikan untuk masa hadapan juga di tunjukkan.

TABLE OF CONTENTS

CHAPTER

SUBJECT

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLE	xiii
LIST OF FIGURE	xiv
LIST OF SYMBOL	xviii
LIST OF APPENDIX	XX

INTF	RODUC	TION	1		
1.1	Background				
1.2	Proble	Problem Statement			
1.3	Objec	tives	2		
1.4	Scope		2		
LITE	RATU	RE REVIEW	3		
2.1	Backg	round Theory	3		
	2.1.1	Solar System	4		
	2.1.2	Solar Cell Theory	5		
	2.1.3	Tracking Method	6		
	2.1.4	Trackers Drive Type	9		
		2.1.4.1 Active Tracker	9		
		2.1.4.2 Passive Tracker	10		
		2.1.4.3 Chronological Tracker	10		
2.2	Existi	ng Prototype	11		
	2.2.1	Solar Tracker by Bill Lane	11		
	2.2.2	Solar Tracker by Mohamad Fazman Yunus	12		
	2.2.3	Solar Tracker by Tiberiu Tudorache and	13		
		Liviu Kreindler			
	2.2.4	Solar tracking by Jeya Ganesh N,	14		
		Maniprakash S, Chandrasekaran L,			

CHAPTER I

CHAPTER 2

Srinivasan and Srinivasa AR

2.3	Shape Memory Alloy (SMA)15				
2.4	Martensite- Austenite Phase Tranformation	18			
2.5	Temperature Transformation in SMA	21			
2.6	Mechanical and functional Properties of 24				
	NiTi Alloys				
	2.6.1 Shape Memory Effect	24			
	2.6.2 One Way Memory Effect	25			
	2.6.3 Two Way Memory Effect	27			
	2.6.4 Superelastic Effect	38			

CHAPTER	3	MET	HODOI	LOGY	30
		3.1	Introdu	action	30
		3.2	Flowe	hart	31
			3.2.1	Start	32
			3.2.2	Literature Review	32
			3.2.3	Problem Statement	32
			3.2.4	Designing Solar tracker	32
			3.2.5	Prototype	33
			3.2.6	Performance of the Prototype	33
			3.2.7	Result and Discussion	33
		3.3	Engine	eering Design Process	33
			3.3.1	Step 1: Define the Problem	34

	3.3.2	Step 2: Research the Problem	34
	3.3.3	Step 3: Brainstorm Possible Solution	35
	3.3.4	Step 4: Choose the Best Solution	35
	3.3.5	Step 5: Build a Model or Prototype	35
	3.3.6	Step 6: Test Your Solution	35
	3.3.7	Step 7: Communicate Your Solution	36
	3.3.8	Step 8: Redesign as Needed	36
3.4	Gener	al Idea	36
3.5	Conce	eptual Design	37
	3.5.1	Design 1	37
	3.5.2	Design 2	38
	3.5.3	Design 3	39
3.6	Weigh	nted Decision Matrix	40
	3.6.1	Analysis for Actuator Mechanism	40
3.7	Select	ion Design	41
3.8	Fabric	eation Process	42
	3.8.1	How the Prototype Works	46
3.9	Protot	ype Benefits	47

CHAPTER	4	RES	ULTS AND ANALYSIS	48
		4.1	Introduction	48

		4.2	Results		48
		4.3	Analysis	8	48
			4.3.1 I	Flexinol 250 Properties	49
			4.3.2 N	Mechanical Consideration	49
			Ζ	4.3.2.1 Focal Point Estimation	49
			Ζ	4.3.2.2 Stroke Estimation	50
			Ζ	4.3.2.3 SMA Length Estimation	50
			Ζ	1.3.2.4 Winding Estimation	51
			Ζ	4.3.2.5 Force Required	52
			Ζ	1.3.2.6 Torque Required	52
		4.4	The Pro	totype	53
		4.5	Prototyp	be Cost	55
CHAPTER	5	DISC	USSION		56
		5.1	Introduc	ction	56
		5.2	Discussi	on	56
CHAPTER	6	CON	CLUSIO	N AND RECOMMENDATION	58
		6.1	Conclus	ion	58
		6.2	Recomn	nendation	59

REFERENCES	60
APPENDICES	62

LIST OF TABLE

TABLE	TITLE	PAGE
2.1	NiTi Mechanical Properties	19
2.2	Comparison of Nitinol with That of Stainless Steel	19
3.1	Weighted Decision Matrix Method	41
3.2	Evaluation of The design	41

LIST OF FIGURES

FIGURE	TITLE	PAGE

2.1	The Flows in the Solar System	4
2.2	Solar Cell Operating Characteristics	5
2.3	Energy Band Diagram of a Silicon p-n juntion	6
	Solar Cell Under Solar Irradiation	
2.4	Idealised Equivalent Circuit of Solar Cell	6
2.5	Single axis Tracking System	7
2.6	Dual axis Tracking System	8
2.7	The Difference between Elevations Tilt Angle	8
	and Azimuth Rotation	
2.8	Active Tracker	9
2.9	Passive Tracker	10

2.10	Operation of Sensor Module once Cds Comes	11
	Under Shadow	
2.11	Sun Path	12
2.12	Solar Tracker by Mohamad Fazman	13
2.13	Principle of Light Sensors and	14
	Motion Control of PV Panel	
2.14	SMA Solar Tracking	15
2.15	Mechanics of The Shape Memory Effect	17
2.16	Temperature vs Shape Memory Alloy	18
2.17	Crystallography Cube	20
2.18	Two Transformation Paths in Niti Alloys	21
2.19	Phase Transformation Temperatures of SMA	22
2.20	Typical Stress vs Strain Curve for SMA	23
2.21	Simplify Model of SMA	25
2.22	Shape Memory Effect Shown Microscopically	26
2.23	Macroscopically Mechanism of One Way Shape	27
	Memory Effect	
2.24	Macroscopically Mechanism of Two Way Shape	28
	Memory Effect	
2.25	Stress-strain Curve	29

3.1	Overall Flowchart for PSM 1	31
3.2	Engineering Design Process	34
3.3	Design 1	37
3.4	Design 2	38
3.5	Design 3	39
3.6	Acrylic being cut	42
3.7	The Tracker Body	43
3.8	Tapping the Shaft	43
3.9	Drilling Process	44
3.10	Welding Process	44
3.11	Free and Fixed Sprocket	45
3.12	After Welding	45
3.13	Complete Prototype	46
3.14	Spring Position	47
3.15	Prototype benefits	47
4.1	Strength of Multiple Wire lifting	52
4.2	CAD Prototype	53
4.3	The Isometric View	54
4.4	Actual Prototype	54
4.5	Costing	55

5.1	The Reflector Frame and Side Cover	57
5.2	SMA 250	57

LIST OF SYMBOL

A _s	=	Austenite start temperature
A_{f}	=	Austenite finish temperature
Au-Cd	=	Gold cadmium Alloy
D	=	Diameter
d	=	Depth
Ec	=	Conduction band
Eg	=	Band gap
Ev	=	Valence band
F	=	Focal point
M _s	=	Martensite start temperature
M_{f}	=	Martensite finish temperature
NiTi	=	Nickel Titanium
PV	=	Photovoltaic
R	=	Radius

xviii

$ heta_p$	=	Panel Movement Angle
SMA	=	Shape Memory Alloy
SME	=	Shape Memory Effect

LIST OF APPENDIX

APPENDIX	TITLE

А	PSM 1 Flowchart
В	PSM 2 Flowchart
С	PSM 1 Gantt chart
D	PSM 2 Gantt chart
Е	Prototype Drawing
F	PSM 1 Poster
G	PSM 2 Poster

хх

CHAPTER 1

INTRODUCTION

This chapter will briefly discuss about the background study of the project. Besides that, objectives, scope and problem statement also have been discussed

1.1 BACKGROUND OF THE PROJECT

This project only consist of hardware implementation, including mechanical design this project was built as a problem solving to the most existed solar tracker which is still used a fixed solar panel. It also as an optional prototype compared to existing solar tracker. This tracker system has been made by considering a few criteria such as, cost, maintainability, and capability.

1.2 PROBLEM STATEMENT OF THE PROJECT

A solar panel receives more sunlight when it is perpendicular or parallel to the sun, but the direction of the sunlight is always changes depends on the movement of the sun in a day. Mostly, the existed solar panel was installed statically, means that it does not moves to follow the position of the sun. In addition, most existed solar tracker consists of many components and surely has many failure modes. Besides that, it also expensive and moreover it mainly used electric as a power sources. Based on that, this solar tracker system was fabricated in order to solve following problem and decrease the cost.

1.3 OBJECTIVES OF THE PROJECT

Basically there are two main objectives of this project:

- To design a tracker system that can maximize the utilization of solar energy
- To develop a prototype of tracker system that can track the movement of the sun.

1.4 SCOPE OF THE PROJECT

The scope is to develop a prototype of tracker system that can track the movement of the sun to improve the overall electricity generation based on tracking system. This prototype consists of fully mechanical design without any electrical sources. This prototype is a single axis orientation, which is follows the movement of the sun in a day from morning to evening. This tracking system designed to automatically follow the sun and from the input received, it can actuate some mechanism to position the solar panel where it can receive maximum sunlight to produce more energy output then.